
Embedded Target for
OSEK/VDX®

 For Use with Real-Time Workshop®

User’s Guide
Version 1

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Embedded Target for OSEK/VDX User’s Guide
 COPYRIGHT 2003 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: February 2003 Online only Version 1.0 (Release 13+)

i

Contents

Preface

Installing the Embedded Target for OSEK/VDX vi

Version 1.0 Release Notes . vii
Known Software and Documentation Problems vii

Using This Guide . viii

Embedded Target for OSEK/VDX Demos ix

Related Products . x

Typographical Conventions . xii

1
Product Overview

What You Need to Know to Use This Product 1-2

Introduction to the Embedded Target for OSEK/VDX 1-4
Feature Summary . 1-4

2
Configuring the Embedded Target for OSEK/VDX

Hardware and Software Requirements 2-2
Host Platform . 2-2
Hardware Requirements . 2-2

ii Contents

Software Requirements . 2-2

Setting Up and Verifying Your Installation 2-4

Setting Up Your Target Hardware . 2-5
Physical Connections and Communications Ports 2-5
Jumper Settings . 2-5
Special Files Provided for Use with the Phytec
phyCORE-MPC555 Board . 2-7
Configuring the Memory Map for the Phytec
phyCORE-MPC555 Board . 2-8

Setting Target Preferences . 2-12
Target Preference Properties . 2-12
Editing Target Preferences . 2-14

Setting Up Your Installation for the OSEKWorks Target . 2-16
Installing the PhyCORE-555 BSP for OSEKWorks 2-16

Setting Up Your Installation for the ProOSEK Target . . . 2-18
Installing the PhyCORE-555 BSP for ProOSEK 2-18

Setting Up SingleStep . 2-20
SingleStep Installation . 2-20
Configuring SingleStep . 2-20

Customization Hooks for the OSEKWorks
and ProOSEK Targets . 2-25

Adding Custom Code Generation Options 2-25
Adding Custom Makefile Variables and Rules 2-27

3
Generating Real-Time OSEK/VDX Applications

Introduction . 3-2

The Multi-Rate Example Model . 3-4

iii

Tutorial 1: Creating an Application with OSEKWorks 3-6
Before You Begin . 3-6
Configuring the Model . 3-6
Building the Application . 3-10
Downloading and Running the Application 3-11

Tutorial 2: Creating an Application with ProOSEK 3-12
Before You Begin . 3-12
Configuring the Model . 3-12
Building the Application . 3-16
Downloading and Running the Application 3-17

Tutorial 3: Downloading the Application to RAM
via SingleStep . 3-18

Downloading the Generated Code to RAM 3-18
Observing the Generated Code . 3-21

Tutorial 4: Automated Downloading and Debugging 3-25

Tutorial 5: Downloading Generated Code to FLASH 3-28
The osek_led Demo Model . 3-28
Downloading Generated Code to FLASH with
SingleStep On-Chip (v. 7.6.2) . 3-30
Downloading Generated Code to FLASH with
SingleStep with vision . 3-36

4
Generating Code, Calibration Data, and Reports

Build Directories and Files . 4-2
Build Directory (model_implementation) 4-2
Output Subdirectory (BSP_obj) . 4-3
HTML Report Subdirectory (optional) . 4-4

Code Generation Options . 4-5
Target-Specific Options for OSEKWorks Target 4-5
Target-Specific Options for ProOSEK Target 4-7

iv Contents

Setting System and Task Stack Size . 4-10
Efficient Use of Persistent Object Libraries 4-10
Custom Debugger Support . 4-11
Restrictions on Code Generation Options 4-12

Generating ASAP2 Files . 4-14
Compiler-Specific Post-Processing Requirements 4-14
ASAP2 File Generation Procedure . 4-15

Code Generation Reports . 4-17

5
Model Execution

Model Execution in the OSEK/VDX
Operating Environment . 5-2

Rate Scheduler Functions . 5-2
Model Rates and OSEK/VDX Tasks . 5-2
Startup Task for OSEKWorks . 5-5

6
Block Reference

The Embedded Target for OSEK/VDX Block Library 6-2
Using Block Reference Pages . 6-3

Blocks Organized by Category . 6-5
Embedded Target for OSEK/VDX Library Blocks 6-5

Alphabetical List of Blocks . 6-7

1

1.

Preface

This section includes the following topics:

Installing the Embedded Target for
OSEK/VDX (p. vi)

Installation of the product.

Version 1.0 Release Notes (p. vii) Known problems and limitations of this release.

Using This Guide (p. viii) Suggested path through this document to get you up and
running quickly with the Embedded Target for
OSEK/VDX®.

Embedded Target for OSEK/VDX
Demos (p. ix)

Hyperlinks to demo models that illustrate product
features and how to use them.

Related Products (p. x) Products required when using the Embedded Target for
OSEK/VDX; also products that are especially relevant to
the kinds of tasks you can perform with the Embedded
Target for OSEK/VDX.

Typographical Conventions (p. xii) Formatting conventions used in this document.

 Preface

vi

Installing the Embedded Target for OSEK/VDX
Your platform-specific MATLAB Installation guide provides all of the
information you need to install the Embedded Target for OSEK/VDX.

Prior to installing the Embedded Target for OSEK/VDX, you must obtain a
License File or Personal License Password from The MathWorks. The License
File or Personal License Password identifies the products you are permitted to
install and use.

As the installation process proceeds, it displays a dialog similar to the one
below, letting you indicate which products to install.

After the installation process completes, proceed to “Product Overview” to
learn about other software required for use with the Embedded Target for
OSEK/VDX. Then read “Configuring the Embedded Target for OSEK/VDX”
and follow the configuration process described.

Version 1.0 Release Notes

vii

Version 1.0 Release Notes

Known Software and Documentation Problems
This section describes problems and limitations that have been identified in
the current release.

Compiler Optimizations
In some very rare instances, due to compiler defects, compiler optimizations
applied to Embedded Target for OSEK/VDX generated code may cause the
executable program to produce incorrect results, even though the code itself is
correct.

To work around such problems, first refer to your compiler's documentation for
information on how to lower the optimization level of the compiler or turn off
optimizations. Then, having found the optimization switches required, you can
edit the options directly into the template makefile for your OSEK
implementation (osekworks.tmf or proosek.tmf).

Make Error When Compiling Large Numbers of Files
A spurious make utility error occasionally occurs when executing a large
number of target rules, such as building object libraries that contain over a
hundred object files. You can work around this problem as follows:

1 Deselect the Force Rebuild option in the OSEKWorks or ProOSEK code
generation options category of the Real-Time Workshop pane.

2 Execute the make process several times, noting that the same error does not
recur in subsequent builds. You can do this either by clicking the Build
button in the Real-Time Workshop pane, or by executing the model.bat file
manually.

Set Alarm Block Limitation
In the current release, the output of the Set Alarm block can be connected only
to an Activate Task block. The Set Alarm block activates the Task associated
with the Activate Task block.

 Preface

viii

Using This Guide
We suggest the following path to get acquainted with the Embedded Target for
OSEK/VDX and gain hands-on experience with the features most relevant to
your interests:

• Read “What You Need to Know to Use This Product” on page 1-2 to
understand the prerequisite knowledge required to use the Embedded
Target for OSEK/VDX, and to learn about related documentation you may
need to read.

• Read “Introduction to the Embedded Target for OSEK/VDX” on page 1-4 to
learn about the general features of the product.

• Read Chapter 2, “Configuring the Embedded Target for OSEK/VDX” to learn
how to set up your development environment and configure the Embedded
Target for OSEK/VDX for use with a supported OSEK/VDX implementation
(OSEKWorks or ProOSEK).

• Read Chapter 3, “Generating Real-Time OSEK/VDX Applications” to get
started with generating deploying OSEK/VDX applications on target
hardware. Work through the tutorial that is applicable to your chosen
OSEK/VDX implementation.

• Read Chapter 4, “Generating Code, Calibration Data, and Reports” to learn
more about code generation options and other details applicable to your
chosen OSEK/VDX implementation.

• Then, for in-depth information see

- Chapter 5, “Model Execution” for a description of how generated code
executes in the OSEK/VDX environment.

- Chapter 6, “Block Reference” for details on operation of device driver
blocks provided in the OSEK/VDX block library.

• See also “Embedded Target for OSEK/VDX Demos” below.

Embedded Target for OSEK/VDX Demos

ix

Embedded Target for OSEK/VDX Demos
We have provided a number of demos to help you become familiar with features
of the Embedded Target for OSEK/VDX.

If you are reading this document online in the MATLAB Help browser, you can
run the demos by clicking on the links in the Command column of the following
table.

Alternatively, you can access the demo suite from the Launch Pad, or by typing
commands from the MATLAB command prompt, as in this example:

osek_mrate

Embedded Target for OSEK/VDX Demos

 Command Demo Topic

osek_mrate Illustrates how multirate/multitasking models execute under
OSEK/VDX.

osek_led Illustrates a simple hardware driver that provides visual feedback as
the model executes on the target hardware by flashing an LED on
and off. This demo model requires the use of the Phytec
phyCORE-MPC555 board.

osek_apis Illustrates use of the available OSEK OS API blocks. The OSEK API
blocks provide services such as task and alarm activation and
buffering. This demo model requires the use of the Phytec
phyCORE-MPC555 board.

osek_asap2 Illustrates the generation of an ASAP2 file used for calibration.

 Preface

x

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Embedded Target for OSEK/VDX.
They are listed in the table below.

The Embedded Target for OSEK/VDX requires these products:

• MATLAB® 6.5.1

• Simulink® 5.1

• Real-Time Workshop® 5.1

• Real-Time Workshop Embedded Coder 3.1

For more information about any of these products, see either

• The online documentation for that product, if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section

Note The toolboxes listed below all include functions that extend the
capabilities of MATLAB. The blocksets all include blocks that extend the
capabilities of Simulink.

Product Description

Fixed-Point Blockset Design and simulate fixed-point systems

MATLAB The Language of Technical Computing

Real-Time Workshop Generate C code from Simulink models

Real-Time Workshop
Embedded Coder

Generate production code for embedded
systems

Simulink Design and simulate continuous- and
discrete-time systems

Related Products

xi

Stateflow® Design and simulate event-driven systems

Stateflow Coder Generate C code from Stateflow charts

Product Description

 Preface

xii

Typographical Conventions
This manual uses some or all of these conventions.

Item Convention Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names, syntax,
filenames, directory/folder
names, and user input

Monospace font The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax
descriptions in reference
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions,
operators, and constants

This vector represents the
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options
menu.

New terms and for
emphasis

Italics An array is an ordered
collection of information.

Omitted input arguments (...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

[c,ia,ib] = union(...)

String variables (from a
finite list)

Monospace italics sysc = d2c(sysd,'method')

1
Product Overview

This section contains the following topics:

What You Need to Know to Use This
Product (p. 1-2)

Prerequisites for using the Embedded Target for
OSEK/VDX.

Introduction to the Embedded Target
for OSEK/VDX (p. 1-4)

Overview of the product and the use of the Embedded
Target for OSEK/VDX in the development process.

1 Product Overview

1-2

What You Need to Know to Use This Product
This document assumes you are experienced with MATLAB, Simulink,
Real-Time Workshop, and the Real-Time Workshop Embedded Coder.

Minimally, you should read the following from the “Basic Concepts and
Tutorials” section of the Real-Time Workshop documentation:

• “Basic Real-Time Workshop Concepts.” This section introduces general
concepts and terminology related to Real Time Workshop.

• “Quick Start Tutorials.” This section provides several hands-on exercises
that demonstrate the Real-Time Workshop user interface, code generation
and build process, and other essential features.

You should also familiarize yourself with the Real-Time Workshop Embedded
Coder documentation. In particular, you should read the following sections:

• “Data Structures and Code Modules”

• “Code Generation Options and Optimizations”

Familiarity with OSEK/VDX is also helpful. Useful documents available
through the OSEK/VDX Web site (http://www.osek-vdx.org/) include

• OSEK/VDX Operating System Specification

• OSEK Implementation Language (OIL) Specification

You should also be familiar with at least one of the supported OSEK/VDX
implementations and development environments:

• Tornado for OSEKWorks for PowerPC (from Wind River Systems, Inc.)

• ProOSEK (from 3SOFT, GmbH)

Familiarity with your chosen target board and processor are also helpful.
Information on the processor register and memory model are useful in
configuring your debugger. The Embedded Target for OSEK/VDX has been
fully tested with the Phytec phyCORE-MPC555 board, a development board for
the Motorola MPC555 processor. In this document, we assume that you are
working with the Phytec phyCORE-MPC555 development board. Information
about the Motorola MPC555 processor and the Phytec phyCORE-MPC555
board are available at the vendor Web sites:

What You Need to Know to Use This Product

1-3

• The Motorola MPC555 Users Guide is available at the following URL:
http://e-www.motorola.com/webapp/sps/library/prod_lib.jsp.

• Information on the Phytec PhyCORE-MPC555 board is available at the
Phytec Web site: http://www.phytec.com/pc_devbd_555.html.

1 Product Overview

1-4

Introduction to the Embedded Target for OSEK/VDX
The Embedded Target for OSEK/VDX is an add-on product for use with the
Real-Time Workshop Embedded Coder. It provides a unified set of tools for
developing real-time applications for OSEK/VDX.

Used in conjunction with Simulink, Stateflow, and the Real-Time Workshop
Embedded Coder, the Embedded Target for OSEK/VDX lets you

• Design and model your system and algorithms.

• Compile, download, run and debug generated code on the target hardware,
seamlessly integrating with industry-standard compilers and development
tools for OSEK/VDX.

Feature Summary
• Supports two major OSEK/VDX implementations and associated

development tools. The Embedded Target for OSEK/VDX provides two
target configurations:

- OSEK Target for WRS OSEKWorks Implementation: Supports Tornado
for OSEKWorks for PowerPC 3.0. In this document, we refer to this target
as the OSEKWorks target.

- OSEK Target for 3Soft ProOSEK Implementation: Supports ProOSEK
3.0r3. In this document, we refer to this target as the ProOSEK target.

• Supported Board Support Packages (BSPs):

- Fully tested with the Phytec PhyCORE-MPC555 development boards.
Generates executables for deployment to PhyCORE-MPC555 on-board
RAM.

- Generates code for all BSPs provided with the supported OSEK/VDX
implementations.

• Supports generation of a single- or multirate model or subsystem as an
OSEK/VDX executable. Executables can be downloaded and run in either
RAM or FLASH memory.

• Supports Real-Time Workshop task management mechanisms within the
OSEK/VDX environment by mapping sample rates in the model to
OSEK/VDX tasks.

Introduction to the Embedded Target for OSEK/VDX

1-5

• Both target configurations support automatic downloading and debugging of
code via the SingleStepTM debugger.

• OSEK/VDX block library supports basic OSEK APIs

• Supports ASAP2 file generation

• Single-precision math library (mathf.h) support (OSEKWorks only)

• Extensible, open implementation; hook file mechanisms ease customization
of code generation options and makefile variables and rules.

1 Product Overview

1-6

2
Configuring the Embedded
Target for OSEK/VDX

This section contains the following topics:

Hardware and Software Requirements
(p. 2-2)

Hardware platforms supported by the product;
development tools (e.g. ,compilers, debuggers) required
for use with the product.

Setting Up and Verifying Your
Installation (p. 2-4)

Overview of setup process.

Setting Up Your Target Hardware
(p. 2-5)

Port connections and jumper settings required for using
the Embedded Target for OSEK/VDX with the Phytec
PhyCORE-MPC555 board.

Setting Target Preferences (p. 2-12) Configuring environmental settings and preferences
associated with the Embedded Target for OSEK/VDX.

Setting Up Your Installation for the
OSEKWorks Target (p. 2-16)

Configuring the Embedded Target for OSEK/VDX for use
with OSEKWorks.

Setting Up Your Installation for the
ProOSEK Target (p. 2-18)

Configuring the Embedded Target for OSEK/VDX for use
with ProOSEK.

Setting Up SingleStep (p. 2-20) Configuring the SingleStep debugger for downloading
and debugging generated code to the Phytec
PhyCORE-MPC555 board.

Customization Hooks for the
OSEKWorks and ProOSEK Targets
(p. 2-25)

Using hook files to customize target code generation
options, makefile variables, and makefile rules.

2 Configuring the Embedded Target for OSEK/VDX

2-2

Hardware and Software Requirements

Host Platform
The Embedded Target for OSEK/VDX supports only the PC as host platform,
running Windows NT, Windows 2000, or Windows XP.

Hardware Requirements
The MathWorks has tested code generated by the Embedded Target for
OSEK/VDX on the Phytec PhyCORE-MPC555 development board, using the
Board Support Package (BSP) provided.

The Embedded Target for OSEK/VDX also generates code with other BSPs
provided by the supported OSEK/VDX implementations. However, the
generated code has not been tested on the actual target hardware.

In this document, we assume that you are working with the Phytec
phyCORE-MPC555 development board, and we document specific settings and
procedures for use with the Phytec phyCORE-MPC555 board, in conjunction
with specific cross-development environments. If you use a different
development board, you may need to adapt these settings and procedures.

Software Requirements
See “Related Products” in the Preface for information on MathWorks products
required to use Embedded Target for OSEK/VDX. In addition to these
products, a supported OSEK/VDX implementation and development
environment are necessary. This section gives the requirements for the
currently supported OSEK/VDX environments and related tools.

Software Requirements for the OSEKWorks Target
The OSEKWorks target requires Tornado for OSEKWorks for PowerPC 3.0,
from Wind River Systems, Inc. OSEKWorks includes the Diab cross-compiler
and the SingleStep with vision debugger (Version 7.7.1, for use with
VisionPROBE). However, note that testing at The MathWorks indicates that
SingleStep with vision Version 7.7.3 is required for programming FLASH
memory.

The SingleStep debugger is used for automatic downloading, running, and
debugging of generated executables. SingleStep is not required for the

Hardware and Software Requirements

2-3

generation of code and executables, however. You can use a different debugger
or other utility to manually download, execute, and observe the generated
application.

The OSEKWorks target supports two versions of SingleStep:

• SingleStep with vision (Version 7.7.1, for use with VisionPROBE). This
version is currently shipped with OSEKWorks.)

• SingleStep On-Chip version 7.6.2, for use with the Phytec
PhyCORE-MPC555 board with on-board Background Debug Mode (BDM)
connector, or with an external BDM device such as the Macraigor Wiggler
(WBDM8xx) BDM.

Software Requirements for the ProOSEK Target
The ProOSEK target requires ProOSEK 3.0r3 from 3SOFT, GmbH. The target
support options are for the MPC555 processor, with GNU tools.

Note The GNU tools provided with ProOSEK do not include math library
support. Therefore, Simulink blocks that call math library functions are not
supported by the ProOSEK target.

The SingleStep debugger is used for automatic downloading, running, and
debugging of generated executables. SingleStep is not included with ProOSEK,
so you must obtain it separately. SingleStep is not required for the generation
of code and executables, however. You can use a different debugger or other
utility to manually download, execute, and observe the generated application.

The ProOSEK target supports two versions of SingleStep:

• SingleStep with vision (Version 7.7.1, for use with VisionPROBE). However,
note that testing at The MathWorks indicates that SingleStep with vision
Version 7.7.3 is required for programming FLASH memory.

• SingleStep On-Chip version 7.6.2, for use with the Phytec
PhyCORE-MPC555 board with on-board BDM, or with an external BDM
such as the Macraigor Wiggler (WBDM8xx) BDM.

2 Configuring the Embedded Target for OSEK/VDX

2-4

Setting Up and Verifying Your Installation
The next sections describe how to configure your development environment for
use with the Embedded Target for OSEK/VDX and verify correct operation.
The initial configuration steps are described in the following sections:

• “Setting Up Your Target Hardware” on page 2–5

• “Setting Target Preferences” on page 2–12. The target preferences properties
include information about your local system, such as the location of the
OSEK implementation and debugger. Be sure to localize these properties
appropriately for your installation.)

After completing these steps, proceed to the section appropriate to your
development environment:

• If you are using OSEKWorks, see “Setting Up Your Installation for the
OSEKWorks Target” on page 2–16.

• If you are using ProOSEK, see “Setting Up Your Installation for the
ProOSEK Target” on page 2–18.

Setting Up Your Target Hardware

2-5

Setting Up Your Target Hardware
In this document, we assume that you are working with the Phytec
phyCORE-MPC555 development board. This section gives information on the
required connections and jumper settings for the board, and on special test and
linker command files provided for the phyCORE-MPC555 board.

After setting up your phyCORE-MPC555 board, you must set environment
variables associated with the Embedded Target for OSEK/VDX, as described in
“Setting Target Preferences” on page 2–12.

Physical Connections and Communications Ports
Before you begin working with the Embedded Target for OSEK/VDX, you
should set up your phyCORE-MPC555 board and connect it to your host
computer. The hardware setup is described in the phyCORE-MPC555
Quickstart Instructions manual on your Phytec Spectrum CD. See the
“Interfacing the phyCORE-MPC555 to a Host PC” section of the “Getting
Started” chapter.

In this document, we assume that you have connected the BDM port of your
phyCORE-MPC555 board to the parallel port (LPT1) of your host PC. This
connection is used for host/target communication when downloading code or
debugging via the SingleStep debugger.

The configuration of the host system parallel port depends on both the version
of SingleStep and the type of BDM interface that you use. Please consult your
SingleStep documentation for detailed instructions.

Be sure to configure the parallel port of your host PC correctly for your specific
Windows operating system version, as directed by the documentation.

Jumper Settings
The Embedded Target for OSEK/VDX has been tested by the MathWorks with
the Phytec phyCORE-MPC555 board, using the on-board BDM and jumper
settings indicated in the tables below.

• Table 2-1 gives jumper settings for use with the on-board BDM interface.

• Table 2-2 gives jumper settings for use with an external Wiggler BDM or
with VisionPROBE.

2 Configuring the Embedded Target for OSEK/VDX

2-6

• Table 2-3 gives jumper settings to use when executing code that has been
programmed into FLASH memory. (Code execution is initiated either by
pressing the Reset button or by cycling power on the board.

Jumpers that are not shown in the tables are not relevant to the Embedded
Target for OSEK/VDX.

For jumper locations and pin numbers, see the phyCORE-MPC555 Quickstart
Instructions manual.

Table 2-1: PhyCORE-MPC555 Jumper Settings for Use with On-Board BDM

Jumper Setting

JP1 3+4

JP2 1+2

JP5-9 closed

JP17 1+2

Table 2-2: PhyCORE-MPC555 Jumper Settings for Use with External
Wiggler BDM or VisionPROBE

Jumper Setting

JP1 open

JP2 open

JP5-9 open

JP17 open

Setting Up Your Target Hardware

2-7

Special Files Provided for Use with the Phytec
phyCORE-MPC555 Board

Board Support Package for Use with OSEKWorks
The Embedded Target for OSEK/VDX provides a Board Support Package that
supports use of the Phytec PhyCORE-555 board with the OSEKWorks target.
To install this BSP, see “Installing the PhyCORE-555 BSP for OSEKWorks” on
page 2-16.

Test Executable
The Embedded Target for OSEK/VDX provides an executable (.elf file) for the
demo osek_led.mdl. The test file is
matlabroot/toolbox/rtw/targets/osek/osekdemos/bin/osek_led.elf.
This file was generated from the osek_led demo model.

If you are targeting the Phytec phyCORE-MPC555 board, you can use this file
with SingleStep or another debugger to verify that your board, cable, and
jumper setup are correct. The demo osek_led model uses phyCORE-MPC555
specific device driver blocks. When the demo executable is running, the device
driver blinks two LEDs on the phyCORE-MPC555 board at different rates.

You can download and run the test executable by following the procedure
described in “Downloading the Generated Code to RAM” on page 3-18. In step
1 of that section, use the Browse button to locate the osek_led.elf file. Then,
follow the remaining steps to download the code and start a debugging session.

Table 2-3: PhyCORE-MPC555 Jumper Settings for Execution from On-Chip
FLASH Memory at Power-On or Reset

Jumper Setting

JP4 1+2

JP15 1+2

JP5 (solder
jumper on
daughter card)

1+2 (default)

2 Configuring the Embedded Target for OSEK/VDX

2-8

When the SingleStep session has been started, click the green Go arrow to
start program execution. Observe the LEDs on the phyCORE-MPC555 board
to verify correct operation.

Configuring the Memory Map for the Phytec
phyCORE-MPC555 Board
The Embedded Target for OSEK/VDX provides default linker command files
provided for the OSEKWorks and ProOSEK implementations. These command
files support generation of read-only (code) sections that can be located either
in off-chip RAM or on-chip FLASH. The mapping is as follows:

• From address 0x00000 to 0x40000: read-only sections (256KB)

• Starting at address 0x3f9800: read-write sections (26KB) to the on-chip
RAM area

This mapping, along with the register setup performed by the initialization
(startup) code for generating the Chip Select 1 (CS1) signal, allows you to use
the generated executable in either of the following ways:

Download and Run in RAM. When the Download_and_run option is selected, the
build process invokes the SingleStep debugger, configured with the FLASH
Enable (FLEN) bit in the Internal Memory Map register (IMMR) set to 0.
SingleStep loads the executable (.elf file) into off-chip RAM. Thus, by default,
the code image is loaded into off-chip RAM and the on-chip RAM is used for
read-write sections.

You can also manually download and run code in RAM with the FLEN bit set to
0.

See “Tutorial 3: Downloading the Application to RAM via SingleStep” on
page 3-18 and “Tutorial 4: Automated Downloading and Debugging” on
page 3-25 for details.

Download and Run in FLASH. If the SingleStep debugger is started and manually
configured to connect to the target with the FLEN bit of IMMR set to 1, internal
access cycles from 0x0 to 0x2FBFFF are mapped to the on-chip FLASH by the
MPC555. Thus, you can connect SingleStep to the target and then use the
SingleStep Flash Programmer dialog box to load the generated executable
(.bin file) into the on-chip FLASH. During reset, if the board is configured to
set the FLEN bit to 1, the processor will execute the code from on-chip FLASH.

Setting Up Your Target Hardware

2-9

For details on running generated code in FLASH, see

• “Tutorial 5: Downloading Generated Code to FLASH” on page 3-28

• Table 2-3, PhyCORE-MPC555 Jumper Settings for Execution from On-Chip
FLASH Memory at Power-On or Reset

See also the section “Hard Reset Configuration Word” in the MPC555 Users
Manual for information on controlling reset behavior. Also, see the Phytec
manuals for information on jumper settings on the Phytec board, which allow
board level control over the Hard Reset Configuration Word.

Other Memory Mapping Examples
There are also other memory mapping examples provided in the linker
command files. In the following example below, off-chip RAM is equally divided
between read-only and read-write sections. This example assumes 256KB of
off-chip RAM on the Phytec board. It also acceptable for larger RAM sizes (but
would allow use of only the first 256KB of RAM).

ram_as_rom: org = 0x2000, len = 0x1e000
ram : org = 0x20000, len = 0x20000

This mapping allocates slightly less than 128KB of memory for the program
(ROM) and 128KB for RAM. The address space below 0x2000 is reserved for
interrupt vectors (refer to the exception memory regions section of linker
command file). If your target board has additional memory and you want to
make it available for larger executable image sizes, you can edit the linker
command file to support the additional memory. For example, to support 1MB
of on-board RAM, and allocate 512KB each to read-only and read-write
sections, you would change the mapping as follows:

ram_as_rom: org = 0x2000, len = 0x7e000
ram : org = 0x80000, len = 0x80000

When you increase the size of the memory map, be sure to verify that the
phyCORE-MPC555 jumpers are set correctly to ensure proper memory chip
selection. Consult Table 5 in the in the phyCORE-MPC555 Hardware Manual
for proper settings for solder jumpers 18 and 10 on the daughter card module.

To modify the memory maps or the power-on/reset behavior of the processor
requires a detailed understanding of the internal processor register values that
control memory mapping and chip select signals, and of how they are wired for
your particular board. The register values can be set by

2 Configuring the Embedded Target for OSEK/VDX

2-10

• The Hard Reset Configuration Word

• The debugger when it connects to the target

• The startup code of the executable

Register files for the SingleStep debugger (e.g., *.cfg, *.reg and *.wsp) control
initial register values. BSP files (such as the OSEKWorks procinit.s)set
values when the code is run.

Modifying the Memory Map for the OSEKWorks Target
To modify the phyCORE-MPC555 memory map for programs generated by the
OSEKWorks target, you must

• Edit the linker command file, bsp.lk.

• Rebuild the phyCORE-MPC555 BSP.

You can find and edit bsp.lk in the following location:

installdir/TornadoOW_ppc_3.0/target/osekworks/bsp/ppc/phycore555/src

After you edit this copy of bsp.lk, use the following commands from the PC
command prompt window to rebuild the BSP.

 cd <installdir>TornadoOW_ppc_3.0/target/osekworks/bsp/ppc/phycore555/src
 .\phycore_make.bat clean
 .\phycore_make.bat all

Note that if you run the setup_osekworks_phycorebsp.m script again, it will
overwrite your changes to bsp.lk.

Modifying the Memory Map for the ProOSEK Target
The board configuration specifics required by the ProOSEK environment come
from a board directory. The ProOSEK target provides a board directory for the
phyCORE-MPC555 that is installed using setup_proosek_phycorebsp.m. The
board directory for the phyCORE-MPC555 is
matlabroot/toolbox/rtw/targets/osek/proosek/boards/PHYCORE555.

This directory contains

• os.cmd: Linker command file.

• startup.s: Source code for the program initialization.

Setting Up Your Target Hardware

2-11

• board.h: Board specific macros. Clock configuration is the most important
function defined here.

• PHYCORE555.cnf: Configuration information about the board.

• target.txt: General information about the board.

These files are copies of files installed with ProOSEK. See your ProOSEK
documentation for more information on these files.

To modify the phyCORE-MPC555 memory map for programs generated by the
ProOSEK target, at a minimum you must edit the linker command file
(os.cmd) in the board support directory. The PHYCORE555.cnf file also contains
configuration memory configuration information, but this file is not used
during the code generation, compilation, or automated download and run
process.

After you make changes to os.cmd, you must run the
setup_proosek_phycorebsp script to recopy the BSP. Respond y to all prompts
from the script. (See “Installing the PhyCORE-555 BSP for ProOSEK” on
page 2-18). The setup_proosek_phycorebsp script copies os.cmd to the boards
folder within the ProOSEK installation tree. Where installdir is the
ProOSEK root directory, os.cmd is located in installdir/boards/PHYCORE555.

You can edit this copy of os.cmd, but we do not recommend doing so, because if
you run the setup_proosek_phycorebsp.m script again, it will overwrite
os.cmd.

2 Configuring the Embedded Target for OSEK/VDX

2-12

Setting Target Preferences
This section describes environmental settings associated with the Embedded
Target for OSEK/VDX. These settings, which persist across MATLAB sessions
and different models, are referred to as target preferences. Target preferences
let you specify properties such as the location of your installed OSEK/VDX
implementation and other parameters affecting the generation, building, and
downloading of code.

Target Preference Properties
Table 2-4 summarizes the preference properties, and their defaults, for the
Embedded Target for OSEK/VDX.

Table 2-4: Embedded Target for OSEK/VDX Preferences Summary

Preference
Name

Description Default or Example
Value

Implementation Name of installed
OSEK/VDX
implementation
('osekworks' or 'proosek')

'osekworks'

ImpPath Path to installed
OSEK/VDX
implementation (must be
localized for your
installation)

Examples:
'c:\wind\TornadoOW_ppc_3.0'
(for an OSEKWorks installation)

'c:\ProOSEK' (for a ProOSEK
installation)

StaticLibraryDirectory Directory where static
object libraries are to be
built and stored
(see “Efficient Use of
Persistent Object
Libraries” on page 4–10)

Default:
matlabroot\toolbox\rtw\targets
\osek\lib

Examples:
matlabroot\work
c:\temp

Setting Target Preferences

2-13

Debugger Name of debugger used for
automatic downloading

'SingleStep'

Note: An alternate value is
'Custom'. If you select 'Custom',
you must implement custom
debugger support. (See “Custom
Debugger Support” on page 4-11)

DebuggerEXE Name of debugger
executable (must be
localized for your
installation)

Default: 'visppc.exe' (for
SingleStep with vision)

Example: 'bdmp58.exe' (for
SingleStep On-Chip 7.6.2)

DebuggerPath Path to installed debugger
(must be localized for your
installation)

Default:
d:\Applications\WindRiver\Torn
adoOW_ppc_3.0\host\sds\7.7.1

DebuggerSwitches Switches to set debugger
options (such as port name
and speed) when debugger
is invoked for
auto-downloading. In this
release, these options
apply to SingleStep.
Normally, you should use
the defaults, unless you
use a port other than LPT1
for debugger
communications.

Default for SingleStep with vision

'-V MPC555 -p
visionPROBE:LPT1'

Correct value for SingleStep
On-Chip (7.6.2) with BDM port:

-p LPT1:1

Table 2-4: Embedded Target for OSEK/VDX Preferences Summary

Preference
Name

Description Default or Example
Value

2 Configuring the Embedded Target for OSEK/VDX

2-14

Note Do not use the default value for the ImpPath, DebuggerPath, or
DebuggerEXE preferences. You must modify these preferences to indicate the
locations, on your PC (or network) where your OSEK/VDX implementation
and debugger are installed. Build errors will result if these preferences are not
set correctly.

Editing Target Preferences
To configure the target preferences, you use the Target Preferences Setup
window. This window lets you view, edit, and save the preferences, or reset the
preferences to their default (factory) values.

Target Preferences Setup Window

To open the Target Preferences Setup window and edit target preferences:

1 Select Launch Pad from the View menu in the MATLAB desktop. In the
Launch Pad, click on the plus sign to the left of the Simulink icon.

2 In the expanded list under the Simulink icon, locate the Embedded Target
for OSEK/VDX icon. Click on the plus sign to the left of the Embedded
Target for OSEK/VDX icon. The OSEK Target Preferences icon is now
visible, as shown.

Setting Target Preferences

2-15

3 Double-click on the OSEK Target Preferences icon. The Target
Preferences Setup window opens.

Alternatively, you can open this window by typing the command
osekeditprefs at the MATLAB prompt.

4 Modify the properties you want to change.

5 Click OK to close the window and make your changes persistent.

2 Configuring the Embedded Target for OSEK/VDX

2-16

Setting Up Your Installation for the OSEKWorks Target
Setting up your installation for the OSEKWorks target is relatively simple:

• Obtain the required version of OSEKWorks (see “Software Requirements” on
page 2–2).

• Install OSEKWorks, following the Wind River Systems documentation. You
can install OSEKWorks locally or on your network. Be sure to configure the
Windows environment variable LM_LICENSE_FILE appropriately for the
OSEKWorks license manager.

• Set the target preferences correctly for your installation (see “Setting Target
Preferences” on page 2–12). Make sure that the ImpPath, DebuggerPath,
DebuggerEXE, and DebuggerSwitches preferences are localized correctly for
your installation.

• If you want to use the Phytec PhyCORE-555 board as your hardware target,
run the setup_osekworks_phycorebsp script to install the PhyCORE-555
Board Support Package, as described in “Installing the PhyCORE-555 BSP
for OSEKWorks” on page 2-16.

• If you want to use the SingleStep debugger for downloading and debugging
code, configure SingleStep as described in “Setting Up SingleStep” on page
2–20. You can use another debugger or download utility to download code
manually. Note, however, that the automatic download/debug features of the
OSEKWorks target require SingleStep.

Installing the PhyCORE-555 BSP for OSEKWorks
The OSEKWorks target provides a BSP for the Phytec PhyCORE-555
development board, including full source code and an M-file installer script,
setup_osekworks_phycorebsp.m. The installer script is located in
matlabroot\toolbox\rtw\targets\osek\osekworks. If you want to use the
PhyCORE-555 as your hardware target, you must install the PhyCORE-555
BSP. To do this:

1 Set the target preferences correctly for your installation (see “Setting Target
Preferences” on page 2–12). Make sure that the ImpPath property is set
correctly, as the installer script uses ImpPath to locate the files.

2 At the MATLAB prompt, type

Setting Up Your Installation for the OSEKWorks Target

2-17

setup_osekworks_phycorebsp

3 The installer displays the path to the location where the BSP will be
installed, and prompts for continuation as shown below.

Ready to create Phytec BSP in directory tree:
'D:\wind\TornadoOW_ppc_3.0\target\osekworks'
Do you want to continue?([y]/n):y

4 The installer copies the required files and prompts for continuation as
shown below.

Successfully copied files into OSEKWorks tree...
Successfully created 'phycore_make.bat'...
Do you want to build the BSP now?([y]/n):y

5 The installer builds the BSP, displaying a number of progress messages.
When the BSP is built, the following completion message is displayed:

Finished setup of phycore555.

2 Configuring the Embedded Target for OSEK/VDX

2-18

Setting Up Your Installation for the ProOSEK Target
Setting up your installation for the ProOSEK target is relatively simple:

• Obtain the required version of ProOSEK (see “Software Requirements” on
page 2–2).

• Install ProOSEK, following the 3SOFT documentation. You can install
ProOSEK locally or on your network.

• Set the target preferences correctly for your installation (see “Setting Target
Preferences” on page 2–12). Make sure that the ImpPath, DebuggerPath,
DebuggerEXE, and DebuggerSwitches preferences are localized correctly for
your installation.

• If you want to use the Phytec PhyCORE-555 board as your hardware target,
run the setup_proosek_phycorebsp script to install the PhyCORE-555
Board Support Package, as described in “Installing the PhyCORE-555 BSP
for ProOSEK” on page 2-18.

• If you want to use the SingleStep debugger for downloading and debugging
code, configure SingleStep as described in “Setting Up SingleStep” on page
2–20. You can use another debugger or download utility to download code
manually. Note, however, that the automatic download/debug features of the
OSEKWorks target require SingleStep.

Installing the PhyCORE-555 BSP for ProOSEK
The ProOSEK target provides a BSP for the Phytec PhyCORE-555
development board, including an M-file installer script,
setup_proosek_phycorebsp.m. The installer script is located in
matlabroot\toolbox\rtw\targets\osek\proosek.

If you want to use the PhyCORE-555 as your hardware target, you must install
the PhyCORE-555 BSP. To do this:

1 Set the target preferences correctly for your installation (see “Setting Target
Preferences” on page 2–12). Make sure that the ImpPath property is set
correctly, as the installer script uses ImpPath to locate the files.

2 At the MATLAB prompt, type

setup_proosek_phycorebsp

Setting Up Your Installation for the ProOSEK Target

2-19

3 The installer displays the path to the location where the BSP will be
installed, and prompts for continuation as shown below.

Ready to copy into directory tree:
'D:\3Soft\ProOSEK'
Do you want to continue?([y]/n):y

4 The installer copies the required files, and the following completion message
is displayed:

Successfully copied files into ProOSEk tree.
Finished setup of phycore555.

2 Configuring the Embedded Target for OSEK/VDX

2-20

Setting Up SingleStep
The SingleStep debugger lets you download, run and debug code generated by
the Embedded Target for OSEK/VDX on a target board. The next sections
describe how to install and configure SingleStep for this purpose. We assume
that you will be using SingleStep in conjunction with a Phytec
phyCORE-MPC555 board.

Note The SingleStep options and user interface screens discussed below are
based on SingleStep version 7.6.2 and 7.7.1 and may differ from your installed
version of SingleStep, or with future versions of SingleStep. The MathWorks
provides the configuration information below only as a convenience. To resolve
questions or difficulties with SingleStep, refer to the SingleStep
documentation, or contact Wind River Systems.

SingleStep Installation
If you have not already done so, you should install the SingleStep debugger and
confirm its operation with your phyCORE-MPC555 board before proceeding
with this section. You should select the SStep Professional Suite (MPC5xx)
option during installation. If necessary, please consult your SingleStep
documentation.

Configuring SingleStep
The following sections explain how to configure the SingleStep debugger. (The
configuration for SingleStep On-Chip (7.6.2) differs slightly from that for
SingleStep with vision.) After configuring SingleStep, you will also be able to
use the debugger directly to debug generated programs.

Configuring SingleStep On-Chip (7.6.2)

Apply Patches for Programming FLASH memory. If you want to program your
generated applications into the phyCORE-MPC555 FLASH memory using
SingleStep On-Chip (7.6.2), you must obtain the following files from Wind
River Systems and apply the updates they contain:

Setting Up SingleStep

2-21

• pcflash11_29_00.zip and pcflash11_29_00.txt
Apply this update first, after reading the information in the
pcflash11_29_00.txt file.

• pcflash3_15_01.zip and pcflash3_15_01.txt
Apply this update second, after reading the information in the
pcflash3_15_01.txt file.

Creat Shortcut to SingleStep On-Chip. If you are using SingleStep On-Chip (7.6.2),
we recommend that you configure a shortcut to SingleStep as follows in order
to start SingleStep with the proper options.

1 If you are using SingleStep On-Chip (7.6.2), the SingleStep installer will
have installed a shortcut named SingleStep On Chip (MPC5xx) in your
system’s Start/Programs/SingleStep 7.6.2 menu. Locate this shortcut file
and make a copy of it on your desktop. Rename the copy to SingleStep On
Chip (MPC5xx) for OSEK Target.

2 Right-click on the SingleStep On Chip (MPC5xx) for OSEK Target shortcut
file and edit its Target property to read as follows
ssteproot\cmd\bdmp58.exe -P -S
matlabroot\toolbox\rtw\targets\osek\osek\@osek_singlestep_tgtaction\phycore-555.w
sp

where ssteproot is the installed SingleStep directory and matlabroot is the
MATLAB root directory.

You will use this SingleStep On Chip (MPC5xx) for OSEK Target shortcut
when manually downloading code to RAM or FLASH via SingleStep.

Configuring SingleStep with vision
OSEKWorks includes SingleStep with vision (version 7.7.1). This version of
SingleStep is intended for use with VisionPROBE hardware. This section
describes configuration steps you must follow to set up SingleStep with vision
and the VisionPROBE for use with the PhyCORE-MPC555 board and with the
OSEKWorks target.

Configure VisionPROBE Nonvolatile RAM. The OSEKWorks target provides
MATLAB command that creates and runs a SingleStep script that configures
the VisionPROBE nonvolatile RAM. The script, visppcinit.cfg, is customized
to your environment.

2 Configuring the Embedded Target for OSEK/VDX

2-22

Use this command as follows:

1 To execute the command, type the following at the MATLAB prompt:

osektgtaction('visppcinit');

2 A message similar to the following is displayed.
Execute SingleStep as: start
d:\Applications\WindRiver\TornadoOW_ppc_3.0\host\sds\7.7.1\cmd\visppc.exe -r
d:\work\visppcinit.cfg -S
D:\Work\R12target\toolbox\rtw\targets\osek\osek\@osek_singlestep_tgtaction\visppc
init.wsp

3 SingleStep executes, under control of the visppcinit.cfg script. Note that
at this point only the SingleStep command window is visible. The script
directs SingleStep to connect to the VisionPROBE. Then, the script executes
a further VisionSHELL script. This script is located within matlabroot, in
the subdirectory
\toolbox\rtw\targets\osek\osek\@osek_singlestep_tgtaction\rtw_phycore555.reg.

The rtw_phycore555.reg. script actually programs the VisionPROBE
nonvolatile RAM.

4 After the visppcinit.cfg script completes, the SingleStep command
window is open. When SingleStep has successfully programmed the
VisionPROBE, you will see a message instructing you to cycle power on the
phyCORE-MPC555 board and manually execute the reset command in the
SingleStep command window.

5 Cycle power and type the reset command as instructed. When the reset
command returns without error, VisionPROBE programming is complete,
and the VisionPROBE is communicating with the PhyCORE-MPC555 board
correctly.

6 Exit the SingleStep session.

7 You should now proceed to the next section and create a shortcut for
SingleStep.

Configuring a Shortcut to SingleStep with vision. The OSEKWorks installer does not
install a shortcut for SingleStep with vision. If you are using SingleStep with

Setting Up SingleStep

2-23

vision, we recommend that you configure a shortcut to SingleStep as follows in
order to start SingleStep with the proper options.

To configure the shortcut, follow the instructions below. Note that below,
OSEKWorksroot refers to the root OSEKWorks directory:

1 Locate the SingleStep with vision executable, and create a shortcut to it on
your desktop. The location of the executable is
OSEKWorksroot\host\sds\7.7.1\cmd\visppc.exe.

2 Rename the shortcut to SingleStep with vision(MPC5xx)for OSEK
Target.

3 Right-click on the SingleStep with vision (MPC5xx) for OSEK Target
shortcut file and edit its Target property to read as follows:
OSEKWorksroot\host\sds\7.7.1\cmd\visppc.exe -P -S
matlabroot\toolbox\rtw\targets\osek\osek\@osek_singlestep_tgtaction\phycore-555.w
sp

You will use this SingleStep with vision (MPC5xx) for OSEK Target
shortcut when manually downloading code to RAM or FLASH via
SingleStep with vision.

Install SinglStep 7.7.3 and Apply Patches for Programming FLASH memory. SingleStep
with vision version 7.7.1 does not provide built-in support for programming the
phyCORE-MPC555 FLASH memory. However, an extension that supports
FLASH programming is included with SingleStep with vision 7.7.3. If you want
to program your generated applications into the phyCORE-MPC555 FLASH
memory, you should install SingleStep with vision 7.7.3 and apply this
extension.

SingleStep with vision 7.7.3 is available from the Wind River web site. Version
7.7.3 works with licenses provided for version 7.7.1.

The extension for phyCORE-MPC555 FLASH programming with SingleStep
with vision 7.7.3 is provided as a .zip file in the SingleStep subdirectory:

cmd/Addin_Flash_Drivers/custom/MPC555/c1.0e

Unzip this file to obtain the documentation and files required to apply the
extension to SingleStep. The Embedded Target for OSEK/VDX presumes this
.zip file will be unpacked in place, and that the ppcusr.bin file found there
will be place in the SingleStep cmd directory.

2 Configuring the Embedded Target for OSEK/VDX

2-24

After setting up the SingleStep with vision 7.7.3 environment, update the
SingleStep with vision (MPC5xx) for OSEK Target shortcut you created
previously (see “Configuring a Shortcut to SingleStep with vision” on page 2–
22) to point to the new version of SingleStep.

Configure phyCORE-MPC555 Jumpers
Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Jumper Settings” on page 2–5.

Configure SingleStep Parameters
The procedure for configuring SingleStep parameters, downloading code to the
target via BDM, and running a debugging session is given in “Tutorial 3:
Downloading the Application to RAM via SingleStep” on page 3-18.We
recommend that you read that section and generate code, and then configure
SingleStep parameters and download code as described.

You can also test your SingleStep installation using a test executable provided
with the Embedded Target for OSEK/VDX. See “Special Files Provided for Use
with the Phytec phyCORE-MPC555 Board” on page 2–7.

Customization Hooks for the OSEKWorks and ProOSEK Targets

2-25

Customization Hooks for the OSEKWorks
and ProOSEK Targets

The Embedded Target for OSEK/VDX provides hook file mechanisms that
simplify customization of the system target files (STFs) and template makefiles
(TMFs) for both the OSEKWorks and ProOSEK targets. To use these
mechanisms, you do not have to edit the distributed STFs or TMFs.

Adding Custom Code Generation Options
The target-specific code generation options for the OSEKWorks and ProOSEK
targets are specified by the rtwoptions structures defined in the STFs,
osekworks.tlc and proosek.tlc. The rtwoptions structure is described in the
“RTW_OPTIONS Section” discussion in the “Targeting Real-Time Systems”
chapter of the Real-Time Workshop documentation.

You can extend these options by creating a hook file, user_osek_options.tlc.
This file must be in the Target Language Compiler path. The
user_osek_options.tlc file should specify additional elements of the
rtwoptions structure.

The following example adds a USER OPTIONS item to the Category menu of the
Real-Time Workshop pane. When USER OPTIONS is selected, the Real-Time
Workshop pane displays an edit filed labeled User load factor. This field
provides values for the associated TLC and makefile variables, which are used
in the build process.

2 Configuring the Embedded Target for OSEK/VDX

2-26

/%
 BEGIN_RTW_OPTIONS

 rtwoption_index = 0;

 rtwoption_index = rtwoption_index + 1;
 rtwoptions(rtwoption_index).prompt = 'USER OPTIONS';
 rtwoptions(rtwoption_index).type = 'Category';
 rtwoptions(rtwoption_index).enable = 'on';
 rtwoptions(rtwoption_index).default = 1; % number of items under this category
 rtwoptions(rtwoption_index).popupstrings = '';
 rtwoptions(rtwoption_index).tlcvariable = '';
 rtwoptions(rtwoption_index).tooltip = '';
 rtwoptions(rtwoption_index).callback = '';
 rtwoptions(rtwoption_index).opencallback = '';
 rtwoptions(rtwoption_index).closecallback = '';
 rtwoptions(rtwoption_index).makevariable = '';

 rtwoption_index = rtwoption_index + 1;
 rtwoptions(rtwoption_index).prompt = 'User load factor';
 rtwoptions(rtwoption_index).type = 'Edit';
 rtwoptions(rtwoption_index).default = '20';
 rtwoptions(rtwoption_index).tlcvariable = 'ulfactor';
 rtwoptions(rtwoption_index).makevariable = 'ULFACTOR';
 rtwoptions(rtwoption_index).tooltip = ['The user load factor '];
 rtwoptions(rtwoption_index).callback = '';
 rtwoptions(rtwoption_index).opencallback = '';
 rtwoptions(rtwoption_index).closecallback = '';

 END_RTW_OPTIONS
 %/

You can also overload existing options that are defined in the provided STFs
(osekworks.tlc and proosek.tlc). To overload an existing option, use the
same tlcvariable field that is defined in the STF. An example of overloading
an option would be to add a BSP name to the OSEKWorks Board Support
Package pop-up menu. In such a case, you should add to the existing menu,

Customization Hooks for the OSEKWorks and ProOSEK Targets

2-27

not simply replace it with a single value. In the following example, myBoard is
added to the list of menu items.

rtwoption_index = rtwoption_index + 1;
 rtwoptions(rtwoption_index).prompt = 'Modified OSEKWorks Board
Support Package (BSP)';
 rtwoptions(rtwoption_index).type = 'Popup';
 rtwoptions(rtwoption_index).default = 'phycore555';
 rtwoptions(rtwoption_index).popupstrings =
'axiomcmd565|axiomcme555|estsbc555|motevb555|motmbx8xx|phycore555|myBoard';
 rtwoptions(rtwoption_index).tlcvariable = 'bspName';
 rtwoptions(rtwoption_index).makevariable = 'OSEK_BOARD';
 rtwoptions(rtwoption_index).tooltip = ['Customized Board Support
Packages'];
 rtwoptions(rtwoption_index).callback = '';
 rtwoptions(rtwoption_index).opencallback = '';
 rtwoptions(rtwoption_index).closecallback = '';

Adding Custom Makefile Variables and Rules
The TMFs for the OSEKWorks and ProOSEK targets (osekworks.tmf and
proosek.tmf) provide include statements that allow you to specify additional
makefile variables and makefile rules.

The include statement for variables is

-include ..\user_makefile_variables.mk

If the user_makefile_variables.mk file exists, the variables it defines are
added to the generated makefile.

2 Configuring the Embedded Target for OSEK/VDX

2-28

The include statement for rules is

-include ..\user_makefile_rules.mk

If the user_makefile_rules.mk file exists, the rules it defines are added to the
rules section of the generated makefile.

3
Generating Real-Time
OSEK/VDX Applications

This section includes the following topics:

Introduction (p. 3-2) Chapter overview and suggested path through the
tutorials.

The Multi-Rate Example Model (p. 3-4) Description of the demo model that is used in subsequent
tutorials.

Tutorial 1: Creating an Application
with OSEKWorks (p. 3-6)

A hands-on exercise in building an application for
OSEKWorks from a simple model.

Tutorial 2: Creating an Application
with ProOSEK (p. 3-12)

A hands-on exercise in building an application for
ProOSEK from a simple model.

Tutorial 3: Downloading the
Application to RAM via SingleStep
(p. 3-18)

A hands-on exercise in downloading, executing, and
observing generated code in RAM on a target board.

Tutorial 4: Automated Downloading
and Debugging (p. 3-25)

A hands-on exercise in automatic downloading and
debugging of generated code in RAM on a target board.

Tutorial 5: Downloading Generated
Code to FLASH (p. 3-28)

A hands-on exercise in downloading and running
generated code to FLASH memory on a target board.

3 Generating Real-Time OSEK/VDX Applications

3-2

Introduction
This chapter describes how use the Embedded Target for OSEK/VDX to
generate, download, and run real-time OSEK/VDX applications on a target
development board.

We suggest the following path through these tutorials:

1 Read and work through “The Multi-Rate Example Model” on page 3-4 to
learn about the demo model that is used in tutorials 1-4.

2 Read and work through the tutorial appropriate to the OSEK/VDX
implementation you use. In the tutorial, you will generate a target
executable using your OSEK/VDX implementation and development
environment.

- If you use OSEKWorks, see “Tutorial 1: Creating an Application with
OSEKWorks” on page 3-6.

- If you use ProOSEK, see “Tutorial 2: Creating an Application with
ProOSEK” on page 3-12.

3 Proceed to “Tutorial 3: Downloading the Application to RAM via SingleStep”
on page 3-18 after you have generated an executable. This tutorial walks
through a typical manual downloading and debugging session with the
SingleStep debugger and a Phytec PhyCORE-MPC555 development board.
It will give you some insight into how a generated program executes under
OSEK/VDX.

4 Continue with “Tutorial 4: Automated Downloading and Debugging” on
page 3-25 to learn how to use the automated downloading and debugging
features of the product.

5 The preceding tutorials use a RAM-based application. To learn how to
download and run code in FLASH memory, work through the final “Tutorial
5: Downloading Generated Code to FLASH” on page 3-28

6 The tutorials introduce you to the basic operation of the Embedded Target
for OSEK/VDX. After you understand the basic feature set, read “Code
Generation Options” on page 4-5 for a complete list of all the options
available.

Introduction

3-3

In addition to the Embedded Target for OSEK/VDX, you will need the following
components:

• A supported OSEK/VDX implementation and development environment (see
“Software Requirements” on page 2–2).

• A Phytec PhyCORE-MPC555 development board. The MathWorks has fully
tested and qualified the Embedded Target for OSEK/VDX for use with the
PhyCORE-MPC555 board and the associated Board Support Package (BSP).

• SingleStep debugger. (See “Software Requirements” on page 2–2.)
SingleStep is used to download, execute, and observe the generated
application.

Note If you want to use a different development board, debugger, or
download utility for this tutorial, you will need to adapt the procedures
described below, especially “Tutorial 3: Downloading the Application to RAM
via SingleStep” on page 3-18 below. If you plan to use a board other than the
PhyCORE-MPC555, be aware that the Embedded Target for OSEK/VDX does
support all the BSPs provided by OSEKWorks and ProOSEK. However, the
MathWorks has not tested beyond the code generation stage with boards other
than the PhyCORE-MPC555.

3 Generating Real-Time OSEK/VDX Applications

3-4

The Multi-Rate Example Model
All the tutorials in this chapter (except Tutorial 5) use a simple demo model,
osek_mrate. This demo is provided with the Embedded Target for OSEK/VDX.

1 Open the model. If you are reading this document online in the MATLAB
Help browser, you can open the model by clicking on this link: osek_mrate.

Alternatively, type the model name at the MATLAB command line:

osek_mrate

2 Create a directory, osek_tut, that is outside the MATLAB directory
structure. Make osek_tut your working directory.

3 Save a local copy of the osek_mrate model to your working directory. We will
work with this copy throughout this exercise.

4 osek_mrate is a multi-rate model with three sample rates. The Sample time
colors option is enabled for this model. Type Ctrl+D to update the diagram
and color code the blocks and lines in your model to indicate the sample rates
at which the blocks operate.

Observe that the fastest (red) blocks have a sample rate of 1 Hz (sample time
of 1 second); thus the base rate of the model is 1 Hz. The next-fastest blocks
(green) have a sample rate of 2 Hz (sample time of 2 seconds). A Rate
Transition block is inserted between the 1 Hz Gain block and the 2 Hz
Discrete Time Integrator block. The slowest (blue) blocks have a sample rate
of 3 Hz (sample time of 3 seconds).

The Multi-Rate Example Model

3-5

osek_mrate Model

5 To learn how to configure the model and generate code for your OSEK/VDX
implementation, continue with one of the following tutorials:

• If you use OSEKWorks, continue to “Tutorial 1: Creating an Application with
OSEKWorks” on page 3-6.

• If you use ProOSEK, continue to “Tutorial 2: Creating an Application with
ProOSEK” on page 3-12.

3 Generating Real-Time OSEK/VDX Applications

3-6

Tutorial 1: Creating an Application with OSEKWorks
In this tutorial, we will build a real-time multitasking application for
OSEKWorks from a simple model. We assume that you are already familiar
with Simulink and with the Real-Time Workshop code generation and build
process.

In the following sections, we will

• Configure the model.

• Generate and examine code and build an executable program.

• Download the executable code to a target board, initiate a debugging session,
and set breakpoints and observe the execution of the program.

Before You Begin
This tutorial requires specific hardware and software (as described in
“Introduction” on page 3-2) in addition to the Embedded Target for
OSEK/VDX. Please be sure that you have

• Set up your development board and connected it to your host PC, as
described in “Setting Up Your Target Hardware” on page 2–5.

• Installed OSEKWorks as described in “Setting Up Your Installation for the
OSEKWorks Target” on page 2–16.

• Installed SingleStep and configured it as described in “Setting Up
SingleStep” on page 2–20.

• Set up your target preferences correctly for OSEKWorks, as described in
“Setting Target Preferences” on page 2–12

Configuring the Model

1 Open the Simulation parameters dialog box and select the Solver pane.
Make sure that the Solver parameters are set as shown in the figure below.

Tutorial 1: Creating an Application with OSEKWorks

3-7

Observe that the solver Mode is set to Auto. Since the model has three
sample rates, this option will cause the model to execute in MultiTasking
mode. When code is generated from the model, blocks running at each rate
will execute in a separate task.

2 Select the Real-Time Workshop pane. Select Target configuration from
the Category menu.

3 Click on the Browse button to open the System Target File Browser. In the
browser, select OSEK Target for WRS OSEKWorks Implementation. Then
click OK to close the browser and return to the Real-Time Workshop pane.

3 Generating Real-Time OSEK/VDX Applications

3-8

The Target configuration settings should now be as shown in the figure
below.

4 Select General code generation options from the Category menu. Make
sure the Generate HTML report option is off. In this tutorial, we will not
generate a code generation report.

5 Select ERT code generation options (3) from the Category menu. Make
sure that the Generate an example main program option is off. This option
is not supported, because the Embedded Target for OSEK/VDX does not use

Tutorial 1: Creating an Application with OSEKWorks

3-9

the standard main program module generated by Real-Time Workshop
Embedded Coder. Instead, the Embedded Target for OSEK/VDX generates
its own main program, osek_main.c.

6 Select OSEKWorks code generation options (1) from the Category menu.
Make sure that all options are set to their defaults, as shown in this figure.

3 Generating Real-Time OSEK/VDX Applications

3-10

The OSEKWorks Board Support Package (BSP) menu selection is
particularly important for this tutorial. The phycore555 option is selected,
so that the correct hardware-specific support code for the Phytec
PhyCORE-MPC555 board is linked into the application.

Also note the Build action menu selection (None). The Build action menu
controls whether or not SingleStep is to be invoked at the end of the build
process to download and run or debug the generated code. We will manually
download and run the generated code, rather than automatically invoking
SingleStep, so this option should be set to None. See “Tutorial 4: Automated
Downloading and Debugging” on page 3–25 for a description of the other
Build action options.

7 Select OSEKWorks code generation options (2) from the Category menu.
Make sure that all options are set to their defaults, as shown in this figure.

8 The model is now configured for code generation. Save the model.

Building the Application
In this section, we will generate code and build a code module suitable for
downloading to the target.

1 Click the Build button to initiate the build process. The build process begins
to display status messages in the MATLAB Command Window.

Tutorial 1: Creating an Application with OSEKWorks

3-11

2 On successful completion of the build process, the following message is
displayed:

Successful completion of Real-Time Workshop build procedure
for model: osek_mrate

3 Observe that the build process has created a build directory,
osek_mrate_osekworks, in your working directory. Use the dir command to
view the contents of the build directory.

dir osek_mrate_osekworks

For this model, executable code has been generated in the phycore555
subdirectory of the build directory. Two executable code files are stored in
this directory:

- osek_mrate.elf: Code and symbols, suitable for use with a symbolic
debugger such as SingleStep. We will use SingleStep to download this file
and execute the code.

- osek_mrate.srec: Code only (Motorola S-Rec format), without symbols,
suitable for execution on the target system.

Note that the executables are also copied to the MATLAB working directory
(one level above the build directory) for convenience.

The build process creates a number of other directories and files. For now,
we are only concerned with the executable code that has been generated. See
“Build Directories and Files” on page 4-2 for information on the detailed
contents of the build directory.

Downloading and Running the Application
You can now download and execute code on the target hardware. To learn how
to do so, proceed to “Tutorial 3: Downloading the Application to RAM via
SingleStep” on page 3-18.

3 Generating Real-Time OSEK/VDX Applications

3-12

Tutorial 2: Creating an Application with ProOSEK
In this tutorial, we will build a real-time multitasking application for ProOSEK
from a simple model. We assume that you are already familiar with Simulink
and with the Real-Time Workshop code generation and build process.

In the following sections, we will

• Configure the model.

• Generate and examine code and build an executable program.

• Download the executable code to a target board, initiate a debugging session,
and set breakpoints and observe the execution of the program.

Before You Begin
This tutorial requires specific hardware and software (as described in
“Introduction” on page 3-2) in addition to the Embedded Target for
OSEK/VDX. Please be sure that you have

• Set up your development board and connected it to your host PC, as
described in “Setting Up Your Target Hardware” on page 2–5.

• Installed ProOSEK as described in “Setting Up Your Installation for the
ProOSEK Target” on page 2–18.

• Installed SingleStep and configured it as described in “Setting Up
SingleStep” on page 2–20.

• Set up your target preferences correctly for ProOSEK, as described in
“Setting Target Preferences” on page 2–12

Configuring the Model

1 Open the Simulation parameters dialog box and select the Solver pane.
Make sure that the Solver parameters are set as shown in the figure below.

Tutorial 2: Creating an Application with ProOSEK

3-13

Observe that the solver Mode is set to Auto. Since the model has three
sample rates, this option will cause the model to execute in MultiTasking
mode. When code is generated from the model, blocks running at each rate
will execute in a separate task.

2 Select the Real-Time Workshop pane. Select Target configuration from
the Category menu.

3 Click on the Browse button to open the System Target File Browser. In the
browser, select OSEK Target for 3soft ProOSEK Implementation. Then
click OK to close the browser and return to the Real-Time Workshop

3 Generating Real-Time OSEK/VDX Applications

3-14

pane.The Target configuration settings should now be as shown in the
figure below.

4 Select General code generation options from the Category menu. Make
sure the Generate HTML report option is off. In this tutorial, we will not
generate a code generation report.

5 Select ERT code generation options (3) from the Category menu. Make
sure that the Generate an example main program option is off. This option
is not supported, because the Embedded Target for OSEK/VDX does not use

Tutorial 2: Creating an Application with ProOSEK

3-15

the standard main program module provided by Real-Time Workshop
Embedded Coder. Instead, the Embedded Target for OSEK/VDX generates
its own main program, osek_main.c.

6 Select ProOSEK code generation options (1) from the Category menu.
Make sure that all options are set to their defaults, as shown in this figure.

3 Generating Real-Time OSEK/VDX Applications

3-16

The ProOSEK Board selection menu selection is particularly important for
this tutorial. The PHYCORE555 option is selected, so that the correct
hardware-specific support code for the Phytec PhyCORE-MPC555 board is
linked into the application.

Also note the Build action menu selection (None). The Build action menu
controls whether or not SingleStep is to be invoked at the end of the build
process to download and run or debug the generated code. We will manually
download and run the generated code, rather than automatically invoking
SingleStep, so this option should be set to None. See “Tutorial 4: Automated
Downloading and Debugging” on page 3–25 for a description of the other
Build action options.

7 Select ProOSEK code generation options (2) from the Category menu.
Make sure that all options are set to their defaults, as shown in this figure

8 The model is now configured for code generation. Save the model.

Building the Application
In this section, we will generate code and build a code module suitable for
downloading to the target.

1 Click the Build button to initiate the build process. The build process begins
to display status messages in the MATLAB Command Window.

Tutorial 2: Creating an Application with ProOSEK

3-17

2 On successful completion of the build process, the following message is
displayed:

Successful completion of Real-Time Workshop build procedure
for model: osek_mrate

3 Observe that the build process has created a build directory,
osek_mrate_proosek, in your working directory. Use the dir command to
view the contents of the build directory.

dir osek_mrate_proosek

For this model, executable code has been generated in the PHYCORE555_obj
subdirectory of the build directory. Two executable code files are stored in
this directory:

- osek_mrate.elf: Code and symbols, suitable for use with a symbolic
debugger such as SingleStep. We will use SingleStep to download this file
and execute the code.

- osek_mrate.srec: Code only (Motorola S-Rec format), without symbols,
suitable for execution on the target system.

Note that the executables are also copied to the MATLAB working directory
(one level above the build directory) for convenience.

The build process creates a number of other directories and files. For now,
we are only concerned with the executable code that has been generated. See
“Build Directories and Files” on page 4-2 for information on the detailed
contents of the build directory.

Downloading and Running the Application
You can now download and execute code on the target hardware. To learn how
to do so, proceed to “Tutorial 3: Downloading the Application to RAM via
SingleStep” on page 3-18.

3 Generating Real-Time OSEK/VDX Applications

3-18

Tutorial 3: Downloading the Application to RAM
via SingleStep

In this section, we will download the osek_mrate.elf file (generated in the
previous tutorial) to RAM on the target system.

We assume that the target system is a Phytec PhyCORE-MPC555 board. We
will use the SingleStep debugger to download the generated osek_mrate.elf
file to RAM on the target system, via the BDM port on the target board. We will
then initiate a debugging session, set breakpoints, and verify real-time
operation of the program.

Note The SingleStep options and user interface screens discussed below are
based on SingleStep version 7.6.2 and 7.7.x and may differ from your installed
version of SingleStep, or with future versions of SingleStep. The MathWorks
provides the configuration information below only as a convenience. To resolve
questions or difficulties with SingleStep, refer to the SingleStep
documentation, or contact Wind River Systems.

Make sure you have done the following before you begin:

• Configure a shortcut to SingleStep that starts up SingleStep with the correct
options (see “Setting Up SingleStep” on page 2-20).

• Connect the BDM port of your development board to parallel port LPT1 of
your host PC.

• Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Jumper Settings” on page 2-5.

• Cycle the power (or perform a hard reset) on your development board to set
the board to a known state.

Downloading the Generated Code to RAM
To download the generated osek_mrate.elf file to RAM:

1 Start SingleStep using the SingleStep On Chip (MPC5xx) for OSEK Target
shortcut you created previously (see “Configuring SingleStep On-Chip
(7.6.2)” on page 2-20).

Tutorial 3: Downloading the Application to RAM via SingleStep

3-19

2 The Debug dialog opens. Click on the File tab. Clear the Debug without a
file option. Then, use the Browse button to locate the osek_mrate.elf file.

3 Click the Connection tab. Choose parallel port or network settings
appropriate to the physical connection you will be using between your PC
and PhyCORE-MPC555 board. In the picture below, connection options are
configured for the parallel port LPT1.

4 Click on the Processor tab. Confirm that the MPC555 is selected in the
Processor list, as shown.

3 Generating Real-Time OSEK/VDX Applications

3-20

5 Click on the Options tab. Make sure that the Reset Target and Load
Application Image options are selected, as shown.

6 Use the default options for all other tabs.

7 Click OK. SingleStep attempts to connect to the processor, and displays a
Debug Status window. This picture shows the Debug Status window after
a successful connection and download.

Tutorial 3: Downloading the Application to RAM via SingleStep

3-21

If you see error messages, you may need to adjust the Delay setting on the
Connection pane (see step 2 above) complete a successful download. If
errors persist, consult the SingleStep documentation to troubleshoot the
connection, or contact Wind River Systems for technical support.

8 Click Close to dismiss the Debug Status window.

9 At this point, the application code is in RAM, and SingleStep has established
a debugging session.

In the next section we will use SingleStep to examine the operation of the
generated code as it executes on the target board.

Observing the Generated Code
In this section, we will display the generated main program in SingleStep, set
a breakpoint, and observe the timing of the slowest (3 Hz) sample rate of our
model.

1 Locate the arrow labelled Files at the bottom of the SingleStep Debug
window. Click on this arrow to display the Files selection pane. Select
osek_main.c from the list of files, as shown below.

3 Generating Real-Time OSEK/VDX Applications

3-22

2 Double-click on the selected list element. The source code for osek_main.c is
displayed in the Debug window.

3 The generated code creates several OSEK/VDX tasks. The init task (see
Figure 3-1) is activated once during the OSEK/VDX startup phase. init
calls model_initialize and creates three recurrent OSEK/VDX alarms:

- baseAlarm: OSEK/VDX triggers baseAlarm at intervals of 1 second (i.e., at
the model’s base rate).

- subAlarm_1: OSEK/VDX triggers subAlarm_1 at intervals of 2 seconds.
- subAlarm_2: OSEK/VDX triggers subAlarm_2 at intervals of 3 seconds.

Figure 3-1: init Task Code as Listed in SingleStep

4 The generated code also creates three OSEK/VDX tasks (see Figure 3-2)
that are activated by each of the three alarms, and therefore run at the
corresponding rate:

Tutorial 3: Downloading the Application to RAM via SingleStep

3-23

- The baseRate task is activated by baseAlarm. baseRate calls model_step,
passing in task identifier (tid) 0, indicating that blocks running at the
model’s base rate should execute.

- subRate_1 task: This task is activated by subAlarm_1. subRate_1 calls
model_step, passing in tid 1, indicating that blocks running at the 2 Hz
rate should execute.

- subRate_2 task: This task is activated by subAlarm_2. subRate_2 calls
model_step, passing in tid 1, indicating that blocks running at the 3 Hz
rate should execute.

Figure 3-2: osek_main TASK Definitions, with Breakpoint at subRate_2 Task

5 Set a breakpoint at the beginning of the subRate_2 task, as shown in
Figure 3-2. We will now verify that the subRate_2 task executes at the
correct interval (every 3 seconds).

6 Move the cursor into the main text pane of the Debug window. Then press
the F5 key (equivalent to the green Go arrow) to start program execution.
An hourglass cursor is displayed momentarily. Initial activation of the
subRate_2 task occurs almost immediately, and execution stops at the
breakpoint.

3 Generating Real-Time OSEK/VDX Applications

3-24

7 Subsequent activations of the subRate_2 task will occur every 3 seconds.
You can verify this as follows: Press the F5 key again to resume execution
from the breakpoint. Observe that the hourglass cursor is displayed for 3
seconds before execution stops at the breakpoint again. This will occur each
time you resume execution.

8 Select Exit from the File menu of the SingleStep window to close the
debugging session.

In the next tutorial, “Tutorial 4: Automated Downloading and Debugging” on
page 3–25, we will work with the automatic downloading and debugging
features of the Embedded Target for OSEK/VDX.

Tutorial 4: Automated Downloading and Debugging

3-25

Tutorial 4: Automated Downloading and Debugging
Both the OSEKWorks target and the ProOSEK target let you automatically
download generated applications, with optional initiation of a debugging
session. The SingleStep debugger is required to use these features.

The Build action pull-down menu supports the following options:

• Download_and_run: Invoke SingleStep after the build process to download
the executable to target RAM and start execution.

• Download_and_debug: Invoke SingleStep after the build process to download
the executable to target RAM and start a debugging session.

• None: SingleStep is not invoked. You must download and run or debug the
code manually.

In this tutorial, we will rebuild the osek_mrate application used in the previous
tutorials, and use the Download_and_debug option to download the code and
start a debugging session.

Make sure you have done the following before you begin:

• Make sure you have set the debugger-related target properties (Debugger,
DebuggerEXE, DebuggerPath, Debugger, DebuggerSwitches) correctly for
your SingleStep installation, as described in “Setting Target Preferences” on
page 2-12.

• Cycle the power (or perform a hard reset) on your development board to set
the board to a known state.

1 Return to the Real-Time Workshop pane of the Simulation parameters
dialog box and select the target-specific options for your implementation
(either OSEKWorks code generation options or ProOSEK code generation
options) from the Category menu.

3 Generating Real-Time OSEK/VDX Applications

3-26

2 Select Download_and_debug from the Build action pull-down menu. The
figure below shows this option selected for the OSEKWorks target.

3 Click the Build button to initiate the build process. The build process begins
to display status messages in the MATLAB Command Window.

4 On successful completion of the build process, messages similar to the
following are displayed, indicating that SingleStep has been started up:
Execute SingleStep as: start
\\depot\hub\share\apps\WindRiver\SingleStepDebugger\sds762\cmd\bdmp58.exe -P -S
D:\Work\r12\toolbox\rtw\targets\osek\osek\@osek_diab_tgtaction\phycore-555.wsp -a
d:\work\osek_tut\osek_mrate.elf -r
d:\work\osek_tut\osek_mrate_osekworks\osek_mrate_ram.scr
Successful completion of Real-Time Workshop build procedure for model:
osek_mrate

5 SingleStep displays an initial splash screen. After a few seconds, the
SingleStep Debug window is displayed, with the Program Counter arrow
pointing at the first executable instruction.

6 The executable is now downloaded to the target, and ready to execute under
control of SingleStep. You can now conduct a SingleStep debugging session,
or simply start the program.

7 Select Exit from the File menu of the SingleStep window to close the
debugging session.

Tutorial 4: Automated Downloading and Debugging

3-27

8 You may also want to try the Download_and_run option. If so, make sure you
have closed any existing SingleStep sessions, as multiple SingleStep
sessions can conflict with each other. Then return to the Build action
pull-down menu, select Download_and_run, and click the Build button. After
completion of the build process, SingleStep starts up and downloads and
runs the program on the target, without a breakpoint or any manual
intervention.

In the next and final tutorial, “Tutorial 5: Downloading Generated Code to
FLASH” on page 3-28, we will use a different model to generate code and
download it to FLASH rather than RAM.

3 Generating Real-Time OSEK/VDX Applications

3-28

Tutorial 5: Downloading Generated Code to FLASH
In this tutorial, we will generate code from a different model than that used in
the previous tutorials. We will generate, download and run the generated
program in FLASH rather than RAM.

Before you begin, make sure that you have applied any required patches or
extensions required for your version of SingleStep, as described in one of the
following sections:

• “Configuring SingleStep On-Chip (7.6.2)” on page 2–20

• “Configuring SingleStep with vision” on page 2–21

The osek_led Demo Model
Since we will be executing the generated code from FLASH, we will not be
using an interactive debugging session to observe program execution. The
osek_led demo model is suitable for this tutorial because it can be started via
the Reset button on the target, and because it produces an observable result
directly on the target hardware. Set up the model as follows:

1 Open the model. If you are reading this document online in the MATLAB
Help browser, you can open the model by clicking on this link: osek_led.

Alternatively, type the model name at the MATLAB command line:

osek_led

2 Save a local copy of the osek_led model to your working directory. We will
work with this copy throughout this exercise.

3 The osek_led model uses two counters and two device driver blocks to toggle
two of the LEDs on the PhyCORE-MPC555 board at different rates. The
model is shown in this figure.

Tutorial 5: Downloading Generated Code to FLASH

3-29

4 Before building the model, open the Simulation parameters dialog box and
open the Real-Time Workshop pane. Deselect the Generate code only
option in the Target configuration category. You may also want to
deselect the Generate HTML report option in the General code
generation options category.

5 Click Apply.

6 Click the Build button. The build process for the Embedded Target for
OSEK/VDX creates executables in several formats. These files are created
in your working directory:

- osek_led.bin: a FLASH executable for use with SingleStep on-Chip
(7.6.2)

- osek_led.srec: a Motorola S-Rec file used to prepare a FLASH binary for
use with SingleStep with vision (7.7.3)

- osek_led.elf: suitable for downloading and execution in RAM

7 Your next step depends on which version of SingleStep you are using:

- SingleStep On-Chip (v. 7.6.2): Proceed to “Downloading Generated Code to
FLASH with SingleStep On-Chip (v. 7.6.2)” on page 3-30.

- SingleStep with vision: Proceed to “Downloading Generated Code to
FLASH with SingleStep with vision” on page 3-36.

3 Generating Real-Time OSEK/VDX Applications

3-30

Downloading Generated Code to FLASH with
SingleStep On-Chip (v. 7.6.2)
This section describes how to download and debug the generated osek_led.bin
file to FLASH memory on the target, via SingleStep On-Chip (v. 7.6.2).

Connect to Target With FLASH Enabled
Before programming osek_led.bin into FLASH, it is necessary to set the
FLASH Enable (FLEN) bit on the target. In this section, we will use SingleStep
for this purpose.

1 Start SingleStep using the SingleStep On Chip (MPC5xx) for OSEK Target
shortcut you created previously (see “Configuring SingleStep On-Chip
(7.6.2)” on page 2-20).

2 The Debug dialog box opens. Click on the File tab. Select the Debug
without a file check box, as shown.

3 Click on the Target Configuration tab and select General from the
Category menu. Then select Internal Memory Mapping Register from the
Registers list, as shown.

Tutorial 5: Downloading Generated Code to FLASH

3-31

4 Click on the Show button to open the Internal Memory Mapping
Register dialog box. Confirm that the FLEN-flash enable check box is
selected as shown below.

5 Then click OK to close the Internal Memory Mapping Register dialog
box and return to the Debug dialog box.

Note Make sure to click OK, not Cancel, or SingleStep may use settings
other than those shown in the dialog box.

3 Generating Real-Time OSEK/VDX Applications

3-32

6 Click OK. SingleStep attempts to connect to the processor, and displays a
Debug Status window. This figure shows the Debug Status window after a
successful connection.

If you see error messages, consult the SingleStep documentation to
troubleshoot the connection, or contact Wind River Systems for technical
support.

7 Click Close to dismiss the Debug Status window.

Download Code and Execute in FLASH Memory
The next step is to download the generated code (osek_led.bin) to FLASH
memory, using the SingleStep Flash Programmer dialog box, and start
execution on the target board:

1 Activate the main SingleStep window. If you do not see a Flash button in
the toolbar, select Tools from the ToolBars menu.

2 Click on the Flash button on the toolbar. The Flash Programmer dialog box
opens.

3 Click on the Device tab. In the Device List, double-click on INTERNAL. Then
select MPC555CMF (as shown in this figure), and double-click on this list
entry.

Tutorial 5: Downloading Generated Code to FLASH

3-33

4 Make sure that the Start Address field is set to 0x00000000, as shown.

5 Click on the Apply button.

6 Click on the Workspace tab. Make sure that the follwoing fields are set:

- Load Target Agent :0x003F9800

- Working Buffer Size : 0x00000FFC

3 Generating Real-Time OSEK/VDX Applications

3-34

7 Click on the Program/Verify tab. Specify the full path to the generated
osek_led.bin file in the S-Record or Binary Image File field. You can do
this either by navigating to the file via the Browse button, or by entering
the path and file name into the field.

8 The next step is to set the load address of the program in FLASH memory
via the Start fields in the Location panel. The OSEKWorks and ProOSEK
targets generate code requiring different load addresses.

If you generated code using the OSEKWorks target set the Start fields as
follows:

- Address: 0x0000100

- Bank, Sector: select 1,0

If you generated code using the ProOSEK target set the Start fields as
follows:

- Address: 0x0000000

Tutorial 5: Downloading Generated Code to FLASH

3-35

- Bank, Sector: select 1,0

9 Select the Auto Erase Before Programming and Auto Verify After
Programming options.

10 The Program/Verify settings should now appear similar to the following
figure.

11 Click the Program button. The code is downloaded. During downloading, a
number of progress messages are displayed in the Status panel at the
bottom of the dialog box.

12 Upon completing the download process, SingleStep displays a message box
indicating successful completion. Click OK to dismiss the message box.
Then, close the Flash Programmer dialog box. Do not save changes to the
Flash Programmer when the Save dialog appears.

13 If FLASH programming fails, you should

3 Generating Real-Time OSEK/VDX Applications

3-36

- Check that all jumpers are set correctly as described in “Jumper Settings”
on page 2-5.

- Quit SingleStep and repeat the entire procedure starting at “Connect to
Target With FLASH Enabled” on page 3-30. Make sure, in step 5, that you
click OK (not Cancel) when closing the Internal Memory Mapping
Register dialog box. Otherwise, SingleStep may use settings other than
those shown in the dialog box.

- If errors persist, consult the SingleStep documentation to troubleshoot the
connection, or contact Wind River Systems for technical support.

14 The osek_led code has now been programmed into FLASH. To execute the
code, press the Reset button on the target board. Alternatively, cycle power
on the target board.

15 Observe that LED D4(red) blinks at one second intervals, and LED
D5(green) blinks every other second.

Downloading Generated Code to FLASH with
SingleStep with vision
This section describes how to convert the generated osek_led.srec file into a
binary executable (.bin file) and download the executable to FLASH memory
on the target, via SingleStep with vision.

Before you begin, make sure you have installed the extensions described in
“Install SinglStep 7.7.3 and Apply Patches for Programming FLASH memory”
on page 2–23.

Convert S-Rec File to Binary Executable File
When using SingleStep with vision to download code to FLASH, it is necessary
to convert the .srec file generated by the build process into a special binary
format. To do this, use the osektgtaction utility provided by the Embedded
Target for OSEK/VDX.

At the MATLAB command line, type

 osektgtaction('srectoestbin','model.srec')

where model is the name of the.srec file you want to convert - in this case,
osek_led.srec.

Tutorial 5: Downloading Generated Code to FLASH

3-37

The srectoestbin argument directs the osektgtaction utility to run the
SingleStep convert.exe utility to produce an intermediate binary file. A
second SingleStep utility, mpc555fc.exe, generates a final FLASH-compatible
binary, model_est.bin. The final .bin file has a default starting address of
0x00000000.

In this case, the final binary file is osek_led_est.bin.

Connect to Target With FLASH Enabled
Before programming osek_led_est.bin into FLASH, it is necessary to set the
FLASH Enable (FLEN) bit on the target, and make sure that the Software
Watchdog Timer is disabled. In this section, we will use SingleStep for this
purpose.

1 Start SingleStep using the SingleStep with vision (MPC5xx) for OSEK
Target shortcut you created previously (see “Configuring SingleStep with
vision” on page 2-21).

2 The Debug dialog box opens. Click on the File tab. Select the Open
connection only check box, as shown.

3 Generating Real-Time OSEK/VDX Applications

3-38

3 Click OK. SingleStep attempts to connect to the processor, and displays a
Debug Status window. This figure shows the Debug Status window after a
successful connection.

If you see error messages, consult the SingleStep documentation to
troubleshoot the connection, or contact Wind River Systems for technical
support.

4 Click Close to dismiss the Debug Status window.

5 A connection to the target now exists. From the Windows pull-down menu
in the SingleStep toolbar, select the Debug window.

6 In the Register pane of the Debug window, use the elevator bar and +/- tree
view controls to display the IMMR:FLEN and SYPCR:SWE fields, as shown in
this figure.

Tutorial 5: Downloading Generated Code to FLASH

3-39

7 In the Register pane set the following fields as shown:

- SIU:IMMR:FLEN (Flash Enable) bit to 1

- SIU:SYPCR:SWE (Software Watchdog Enable) bit to 0

FLASH Memory is now enabled. In the next section, you will download and
execute the .bin file.

Download Code and Execute in FLASH Memory
The next step is to download the generated code (osek_led_est.bin) to FLASH
memory, using the SingleStep Vision Flash Utility, and start execution on the
target board:

1 Select Vision Flash Utility from the Tools pull-down menu in the
SingleStep toolbar.

2 Select the Configuration tab in the Flash Programming window.

3 Generating Real-Time OSEK/VDX Applications

3-40

3 In the Configuration pane, and set Devices:MPC555:K1,2,3,M:448x8:1
Device, as shown above.

If this selection is not available, the installation of SingleStep 7.7.3
extensions was probably not performed successfully. See “Configuring
SingleStep with vision” on page 2–21 and make sure that the FLASH
programming extensions are installed correctly. If problems persist, contact
Wind River Systems for technical support.

4 Select the Files tab in the Flash Programming window. Use the Add
button to navigate to the generated osek_led_est.bin file in the build
directory. After finding the.bin file, use the Open button to place this file in
the Binary files list.

Tutorial 5: Downloading Generated Code to FLASH

3-41

5 Select osek_led_est.bin file in the Binary files list. Click on the Toggle
Enable button.

6 Select the Program tab in the Flash Programming window.

3 Generating Real-Time OSEK/VDX Applications

3-42

7 Click the Erase button to be sure the FLASH is erased before programming.

8 Click the Program button to program the binary executable into FLASH.

9 Close the Flash Programmer dialog box.

10 If FLASH programming fails, you should

- Check that all jumpers are set correctly as described in “Jumper Settings”
on page 2-5.

- Quit SingleStep and repeat the entire procedure starting at “Connect to
Target With FLASH Enabled” on page 3-37. Make sure, in step 8, that
your settings are applied correctly. Otherwise, SingleStep may use
settings other than those shown in the dialog box.

Tutorial 5: Downloading Generated Code to FLASH

3-43

- If errors persist, consult the SingleStep documentation to troubleshoot the
connection, or contact Wind River Systems for technical support.

11 The osek_led code has now been programmed into FLASH. To execute the
code, press the Reset button on the target board. Alternatively, cycle power
on the target board.

12 Observe that LED D4(red) blinks at one second intervals, and LED
D5(green) blinks every other second.

3 Generating Real-Time OSEK/VDX Applications

3-44

4
Generating Code,
Calibration Data, and
Reports

This section includes the following topics:

Build Directories and Files (p. 4-2) Summary of the directories and files used in the build
process.

Code Generation Options (p. 4-5) Options specific to the OSEKWorks target and the
ProOSEK target; requirements and restrictions that
apply to the current release.

Generating ASAP2 Files (p. 4-14) How to generate ASAP2 files from your model.

Code Generation Reports (p. 4-17) How to generate HTML code generation reports from the
build process.

4 Generating Code, Calibration Data, and Reports

4-2

Build Directories and Files
The build directory structure and files created by the Embedded Target for
OSEK/VDX build process differ slightly from the standard Real-Time
Workshop Embedded Coder build directories. Figure 4-1 summarizes the
directories and files created during the build process.

Figure 4-1: Directories and Files Created by Build Process

Build Directory (model_implementation)
The top-level build directory is created in your working directory, using the
naming convention: model_implementation, where model is the name of the
generating model and implementation is name of the selected OSEK/VDX
implementation. For example, mymodel_osekworks would be the build

model_implementation

Standard generated model files

Generated main program

OIL file

ASAP2 files (optional)

BSP_obj

html

Generated executables

Object, list, and map files

OSEK implementation-specific
files (oil.c, oil.h, etc.)

Build Directories and Files

4-3

directory name where the OSEKWorks target generates code for the
OSEKWorks implementation from a model mymodel.

The build directory contains

• Standard generated files including source code (model.c, model.h), makefile
(model.mk), model.bat file and others as described in the “Data Structures
and Code Modules” section of the Real-Time Workshop Embedded Coder
documentation.

• OSEK Implementation Language (OIL) file (model.oil) defining
OSEK/VDX system objects such as tasks, alarms, and counters.

• Generated main program (osek_main.c). The main program invokes the
standard OSEK/VDX kernel startup (StartOS) function. The main program
also defines model execution tasks and other tasks (such as system
initialization) that are activated under control of OSEK/VDX. The format in
which tasks are defined is dependent on the OSEK/VDX implementation.

• ASAP2 files (optional; generated if the Generate ASAP2 file option is
selected.

Output Subdirectory (BSP_obj)
This subdirectory contains the final output of the build process: the executable
code file(s), as well as a number of other files produced by the build process.
Usually, you will need to access only the executable, in order to download it to
the target hardware.

Executables are named after the generating model, with a file extension
indicating the file format (e.g., model.elf or model.srec). The executable
format is determined by your development system.

Note that the model.elf, model.srec, and model.map files are copied to the
MATLAB working directory (one level above the build directory). This
conforms to Real-Time Workshop Embedded Coder conventions and provides
easier access to these files.

The naming convention for the output subdirectory is BSP_obj, where BSP is
the name of the BSP selected. (For the OSEKWorks target, the BSP is selected
from the OSEKWorks Board Support Package (BSP) menu. For the
ProOSEK target, the BSP is selected from the ProOSEK Board selection
menu.) For example, if the phycore555 BSP is selected, the output directory is

4 Generating Code, Calibration Data, and Reports

4-4

named phycore555_obj. This convention is adopted because the final
executable contains hardware-specific code linked in from the selected BSP.

This directory also contains C files (oil.c, oil.h) derived from the model.oil
file. Additional artifacts of the build process, such as object and list files and a
linker map file, are also located in this directory.

HTML Report Subdirectory (optional)
This directory is created if the Generate HTML report option is selected (see
“Code Generation Reports” on page 4–17). It contains the HTML code
generation report files.

Code Generation Options

4-5

Code Generation Options
The Embedded Target for OSEK/VDX is an extension of the Real-Time
Workshop Embedded Coder embedded real-time (ERT) target configuration.
The Embedded Target for OSEK/VDX inherits the code generation options of
the ERT target, as well as the general code generation options of the Real-Time
Workshop. These options are available via the Category menu of the
Real-Time Workshop pane of the Simulation Parameters dialog box; they are
documented in the Real-Time Workshop documentation and the Real-Time
Workshop Embedded Coder documentation.

Some code generation options of the ERT target are not relevant to the
Embedded Target for OSEK/VDX, and are either unsupported, or restricted in
their operation. See “Restrictions on Code Generation Options” on page 4-12
for details.

Target-Specific Options for OSEKWorks Target
The OSEKWorks Target has several target-specific code generation options. To
view or change the setting of these options, select OSEKWorks code generation
options (1) or OSEKWorks code generation options (2)from the Category
menu of the Real-Time Workshop pane of the Simulation Parameters dialog
box. The following figures show the options at their default settings.

4 Generating Code, Calibration Data, and Reports

4-6

The options are

• OSEKWorks Board Support Package (BSP): This pull-down menu selects
one of the supported BSPs for use in code generation. The default is
phycore555.

• Build action: This pull-down menu controls what action, if any, the build
process takes after the target executable has been created. The options are:
- Download_and_run: Invoke SingleStep to download the executable to

target RAM and start execution.
- Download_and_debug: Invoke SingleStep to download the executable to

target RAM and start a debugging session.

- None: SingleStep is not invoked. You must download and run or debug the
code manually.

The default Build action is None.

It is possible to invoke a debugger other than SingleStep to execute build
actions. See “Custom Debugger Support” on page 4-11 for guidelines on how
to do this.

• Base task priority: Each OSEK/VDX task is assigned a priority from 0 to
255, with higher numbers signifying higher priority. The Base task priority
is the priority assigned to the base rate (fastest) task in the model. Subrate
tasks are assigned successively lower numbers.

Code Generation Options

4-7

• Task stack size: Stack size, in bytes, allocated to each task in the model. (See
“Setting System and Task Stack Size” on page 4–10.)

• System stack size: Stack size, in bytes, allocated to the OSEK/VDX kernel.
(See “Setting System and Task Stack Size” on page 4–10.)

• System counter (TICKSPERBASE): The number of ticks per second for the
OSEK/VDX system counter. (This parameter sets the TICKSPERBASE
property of the SystemTimer object.)

You can specify System counter as either an integer or as Auto. If Auto is
specified, the Embedded Target for OSEK/VDX determines a minimum
value for TICKSPERBASE, thus minimizing interrupt and counter overhead.
Auto is the default value.

Note that TICKSPERBASE also affects the frequency of rescheduling that is
attempted on return from Category 2 Interrupt Service Routines (ISRs),
because the system counter is a Category 2 ISR.

• Force rebuild of the static libraries used by the model: This option
controls whether or not object file libraries (such as rtwlib) referenced by
the model are rebuilt during the build process. By default, this option is
deselected, and existing object libraries are not rebuilt. Since rebuilding such
libraries may involve compiling a large number of source files, we
recommend the use of the default. See “Efficient Use of Persistent Object
Libraries” on page 4-10 for further information.

• Include ErrorHook function: If this option is selected, a default OSEK
ErrorHook function is generated. The ErrorHook function is generated in the
osek_main.c file. By default, Include ErrorHook function is selected.

Target-Specific Options for ProOSEK Target
The ProOSEK Target has several target-specific code generation options. To
view or change the setting of these options, select ProOSEK code generation
options (1) or ProOSEK code generation options (2)from the Category
menu of the Real-Time Workshop pane of the Simulation Parameters dialog
box. The following figures show the options at their default settings.

4 Generating Code, Calibration Data, and Reports

4-8

Code Generation Options

4-9

The options are

• ProOSEK Board selection: This pull-down menu selects one of the
supported Boards for use in code generation. The default is PHYCORE555.

• Build action: This pull-down menu controls what action, if any, the build
process takes after the target executable has been created. The options are:
- Download_and_run: Invoke SingleStep to download the executable to

target RAM and start execution.
- Download_and_debug: Invoke SingleStep to download the executable to

target RAM and start a debugging session.

- None: SingleStep is not invoked. You must download and run or debug the
code manually.

The default Build action is None.

It is possible to invoke a debugger other than SingleStep to execute build
actions. See “Custom Debugger Support” on page 4-11 for guidelines on how
to do this.

• Base task priority: Each OSEK/VDX task is assigned a priority from 0 to
255, with higher numbers signifying higher priority. The Base task priority
is the priority assigned to the base rate (fastest) task in the model. Subrate
tasks are assigned successively lower numbers.

• Task stack size: Stack size, in bytes, allocated to each task in the model. (See
“Setting System and Task Stack Size” on page 4–10.)

• System counter increment rate (TIME_IN_NS): The period, in
nanoseconds, for the OSEK/VDX system counter.

You can specify System counter as either an integer or as Auto. If Auto is
specified, the Embedded Target for OSEK/VDX determines a maximum
value for TIME_IN_NS, thus minimizing interrupt and counter overhead. Auto
is the default value.

• Force rebuild of the static libraries used by the model: This option
controls whether or not object file libraries (such as rtwlib) referenced by
the model are rebuilt during the build process. By default, this option is
deselected, and existing object libraries are not rebuilt. Since rebuilding such
libraries may involve compiling a large number of source files, we
recommend the use of the default. See “Efficient Use of Persistent Object
Libraries” on page 4-10 for further information.

4 Generating Code, Calibration Data, and Reports

4-10

• Include ErrorHook function: If this option is selected, a default OSEK
ErrorHook function is generated. The ErrorHook function is generated in the
osek_main.c file. By default, Include ErrorHook function is selected.

Setting System and Task Stack Size
The stack sizes allocated to the kernel and the application tasks are defined, in
the OIL file, by the OSEK implementation. The OSEK implementation may
optimize total memory required for all stacks by sharing memory based on
application-specific constraints. The stacks are then statically allocated by the
OIL configuration process and the build process.

Both the OSEWorks and ProOSEK targets let you specify the task stack size.
In addition, the OSEKWorks target lets you specify the system stack size.

When you set the System stack size or Task stack size parameters, it is
important to consider factors that affect stack usage at run time. The System
stack size requirements can be affected by

• The nesting and type of interrupts

• The number and type of tasks in the application

• OSEK OS API calls made at run time

Similarly, Task stack size requirements can be affected by

• Some types of interrupts

• OSEK OS API calls made at run time

• Calls to application functions

Consult your OSEK implementation’s documentation to understand and
determine the worst case system and task stack size requirements. Set the
System stack size and/or Task stack size parameters accordingly.

Efficient Use of Persistent Object Libraries
Because rebuilding object libraries can involve compilation of large numbers of
source code files, it is desirable that the build process rebuilding such libraries
where possible. The Embedded Target for OSEK/VDX provides flexible
mechanisms that let you control how and when object libraries are rebuilt.

The template makefiles provided with the Embedded Target for OSEK/VDX
have the ability to create and use persistent object libraries associated with

Code Generation Options

4-11

• The Real-Time Workshop library, rtwlib (rtw/c/libsrc)

• Certain blocksets that provide a rtwmakecfg.m file that specifies that a
related library may be persistent

The template makefiles manage these libraries through make macros and
through token expansion within the bounds of the token pair:

|>START_PRECOMP_LIBRARIES<|
.
.
.
|>END_PRECOMP_LIBRARIES<|

The template makefiles use the StaticLibraryDirectory target preference
property (see “Setting Target Preferences” on page 2–12). The value of the
StaticLibraryDirectory property propagates (on a per-model/per-build
basis) to the make macro STATIC_LIBDIR in the model_makevars.mk file.

When STATIC_LIBDIR is not empty, it should contain the path to an existing
directory where persistent object libraries are stored. When the compilation of
a model refers to a persistent object library, the build process will use a library
from this location, or if the library does not exist, will create it there.

The Force rebuild of the static libraries used by the model option will cause
all such libraries to be rebuilt, even if they already exist.

Custom Debugger Support
This section provides general guidelines for supporting a debugger other than
SingleStep for use in the build process. Implementing custom debugger
support requires knowledge of MATLAB object-oriented programming. See the
“MATLAB Classes and Objects” in the MATLAB documentation if you are
unfamiliar with this topic.

The Build action options (described in “Code Generation Options” on page 4-5)
are supported by MATLAB OOPS classes and by the Debugger target
preferences (see “Target Preference Properties” on page 2-12).

By default, the Debugger target preference is set to 'SingleStep'. When
'SingleStep' is selected, the build process invokes methods of the
osek_singlestep_tgtaction class to execute the required build actions, such
as starting SingleStep and downloading a generated executable. The

4 Generating Code, Calibration Data, and Reports

4-12

implementation files for the osek_singlestep_tgtaction class and the
package containing it located in

matlabroot/toolbox/rtw/targets/osek/osek/@osek_singlestep_tgtaction

An alternate value for the Debugger target preference is 'Custom'. This value
is provided as a mechanism to invoke an alternative debugger or downloading
utility. When 'Custom' is selected, the build process expects that a
user-defined package osek_custom_tgtaction, containing a class
osek_custom_tgtaction, exists.

You must implement the osek_custom_tgtaction package and class. We
suggest that you start by studying the code in the
@osek_singlestep_tgtaction directory to understand how build actions are
supported with SingleStep.

Next, copy the entire @osek_singlestep_tgtaction directory to a new
directory:

matlabroot/toolbox/rtw/targets/osek/osek/@osek_custom_tgtaction

In the @osek_custom_tgtaction directory, rename
osek_singlestep_tgtaction.m to osek_custom_tgtaction.m. Edit
osek_custom_tgtaction.m, changing every occurance of
'osek_singlestep_tgtaction' to 'osek_custom_tgtaction'.

At this point, you will have implemented a skeletal osek_custom_tgtaction
package that will function identically to the osek_singlestep_tgtaction
package, where the Debugger target preference is set to 'Custom'.

You must now customize the run and debug methods (implemented
respectively in run.m and debug.m) in your new package directory. We cannot
prescribe the exact changes you must make; these modifications depend on the
requirements of your debugger or the other tools you want to invoke.

Restrictions on Code Generation Options
Certain ERT code generation options are not supported (or are restricted) by
the Embedded Target for OSEK/VDX. If these options are selected, the
Embedded Target for OSEK/VDX either ignores the option or issues an error
message during the build process. Table 4-1 summarizes these restricted
options.

Code Generation Options

4-13

Table 4-1: Embedded Target for OSEK/VDX Restricted Code
Generation Options

Option Restriction

MAT-file logging Ignored if selected; build process
terminates

Create Simulink
(S-Function) block

Error if selected; build process
terminates

External mode Error if selected; build process
terminates

Generate an example
main program

Error if selected; build process
terminates. This option should not
be selected for the Embedded
Target for OSEK/VDX. The
Embedded Target for OSEK/VDX
generates a target-specific main
program, osek_main.c.

Generate reusable code Error if selected; build process
terminates

Suppress error status in
real-time model data
structure

Selected by default. Warning
generated if not selected.

Target floating point
math environment

For ProOSEK target only, the
ISO_C option is not supported, and
an error occurs if ISO_C is selected,
followed by build process
termination.

4 Generating Code, Calibration Data, and Reports

4-14

Generating ASAP2 Files
ASAP2 is a data definition standard proposed by the Association for
Standardization of Automation and Measuring Systems (ASAM). ASAP2 is a
standard description you use for data measurement, calibration, and
diagnostic systems. The Embedded Target for OSEK/VDX lets you export an
ASAP2 file containing information about your model during the code
generation process.

Before you begin generating ASAP2 files with the Embedded Target for
OSEK/VDX, you should read the “Generating ASAP2 Files” section of the
Real-Time Workshop Embedded Coder documentation. That section describes
how to define the signal and parameter information required by the ASAP2 file
generation process.

The process of generating an ASAP2 file from your model with Embedded
Target for OSEK/VDX is similar to that described in the Real-Time Workshop
Embedded Coder documentation. However, there are certain differences and
limitations. In the following sections, we describe these differences and
limitations and how they affect the procedure for generating ASAP2 files.

The osek_asap2 demo provides an example of the Embedded Target for
OSEK/VDX ASAP2 file generation feature.

Compiler-Specific Post-Processing Requirements
The Embedded Target for OSEK/VDX generates an initial ASAP2 file during
the code generation process. At this point, the addresses of signals and
parameters on the target system are unavailable, since the code has not been
compiled and linked. The initial ASAP2 file contains placeholders for the
unresolved addresses.

To supply the required memory addresses, the generated code must be
compiled and a compiler-generated MAP file must be created.

After the build process, if the Embedded Target for OSEK/VDX detects the
presence of the ASAP2 file and a MAP file in the required format, it performs
a post-processing phase. During this phase, the MAP file is used to propagate
the required address information back into the ASAP2 file.

MAP file formats differ between compilers, so the post processing phase is
compiler-specific. The Embedded Target for OSEK/VDX provides a

Generating ASAP2 Files

4-15

post-processing mechanism for the compilers supplied with each supported
OSEK implementation.

The names of the ASAP2 file and the MAP file derive from the source model.
The MAP file is generated in the output subdirectory and copied to the working
directory (see “Build Directories and Files” on page 4-2). The ASAP2 file is
written to the build directory.

ASAP2 File Generation Procedure

1 Create the desired model. Use appropriate parameter names and signal
labels to refer to ASAP2 CHARACTERISTICS and MEASUREMENTS respectively.

2 Define the corresponding ASAP2.Parameter and ASAP2.Signal objects in the
MATLAB workspace.

3 Configure the data objects to generate unstructured global storage
declarations in the generated code by assigning one of the following storage
classes to the RTWInfo.StorageClass property:

- ExportedGlobal
- ImportedExtern
- ImportedExternPointer

ExportedGlobal is the default storage class.

4 Configure the other data object properties such as LongID_ASAP2,
PhysicalMin_ASAP2, etc.

5 In the Advanced pane of the Simulation Parameters dialog box, select the
Inline parameters option.

Note that you should not configure the parameters associated with your
ASAP2 data objects in the Model Parameter Configuration dialog box. The
Model Parameter Configuration dialog box does not support the
configuration of ASAP2 parameters. You can, however, use the Model
Parameter Configuration dialog box to configure other parameters in your
model.

4 Generating Code, Calibration Data, and Reports

4-16

6 In the Real-Time Workshop pane of the Simulation Parameters dialog,
select ERT code generation options(2) from the Category menu. Then
select the Generate ASAP2 file option.

7 Click Apply.

8 Click Build (or Generate code).

9 The ASAP2 file is generated as part of the build process.

Code Generation Reports

4-17

Code Generation Reports
The Embedded Target for OSEK/VDX supports an extended version of the
Real-Time Workshop Embedded Coder HTML code generation report.

The extended code generation report consists of several sections:

• The Generated Source Files section of the Contents pane contains a table
of source code files generated from your model. You can view the source code
in the MATLAB Help browser. Hyperlinks within the displayed source code
let you view the blocks or subsystems from which the code was generated.
Click on the hyperlinks to view the relevant blocks or subsystems in a
Simulink model window.

In addition to the standard information and hyperlinks to generated code,
the report generated by The Embedded Target for OSEK/VDX includes links
to the following generated files:

- model.oil: OSEK Implementation Language (OIL) file.

- oil.c, oil.h: C definitions and includes derived from the OIL file.

• The Summary section lists version and date information, TLC options used
in code generation, and Simulink model settings.

• The Optimizations section lists the optimizations used during the build, and
also those that are available. If you chose options that generated less than
optimal code, they are marked in red. This section can help you select options
that will better optimize your code.

• The report also includes information on other code generation options, code
dependencies, and links to relevant documentation.

• The code profile report section includes a detailed itemization of RAM and
ROM usage for all code and data sections, and a complete memory map of the
generated code.

To generate a code generation report and view the profiling report:

1 Select the Real-Time Workshop tab of the Simulation Parameters dialog
box. Select Target configuration from the Category menu. Make sure
that the Generate code only option is not selected.

The reason for this step is that the Embedded Target for OSEK/VDX
extended code generation report obtains information from MAP files that

4 Generating Code, Calibration Data, and Reports

4-18

are created by your cross-compiler during the build process. If the Generate
code only option is on, these files are not generated, which prevents the
generation of the code generation report.

2 Select General code generation options from the Category menu.

3 Select Generate HTML report, as shown in this picture.

4 Follow the usual procedure for generating code from your model or
subsystem.

5 The Real-Time Workshop writes the code generation report file in the html
subdirectory.

6 The Real-Time Workshop automatically opens the MATLAB Help browser
and displays the code generation report.

7 To view the profiling report, click on the Code profile report link in the
Contents pane of the report.

Alternatively, you can view the code generation report in your Web browser.

5
Model Execution

This section includes the following topic:

Model Execution in the OSEK/VDX
Operating Environment (p. 5-2)

How the Embedded Target for OSEK/VDX maps the
generating model’s sample rates into corresponding
OSEK/VDX tasks.

5 Model Execution

5-2

Model Execution in the OSEK/VDX
Operating Environment

This discussion assumes that you are familiar with the Real-Time Workshop
Embedded Coder task management scheme, as described in the “Data
Structures and Program Execution” section of the Real-Time Workshop
Embedded Coder documentation.

Programs generated by the Embedded Target for OSEK/VDX follow
conventions similar to programs generated by Real-Time Workshop Embedded
Coder. All the same tasking cases (single-rate/singletasking,
multi-rate/singletasking, and multi-rate/multitasking) are supported.

However, the Embedded Target for OSEK/VDX maps the generating model’s
sample rates into corresponding prioritized tasks, executing under the control
of OSEK/VDX task management mechanisms. All lower-level timing and task
scheduling functions are handled by OSEK/VDX. As described in the following
sections, this approach results in some efficiencies that simplify and
streamline the generated main program.

Rate Scheduler Functions
Recall that in multi-rate models, scheduling counters are maintained by a
generated rate scheduler function. The rate scheduler function is called by
model_step, on each base rate time step of the model.

In a multi-rate model that executes in SingleTasking mode, the rate scheduler
function is named rate_scheduler. In a multi-rate model that executes in
MultiTasking mode, the rate scheduler function is named
rate_monotonic_scheduler. To handle the multitasking case,
rate_monotonic_scheduler maintains flags that indicate when the Rate
Transition blocks in a model need to execute. In models that require an
absolute time reference, these flags are also used to update absolute time
appropriately.

Model Rates and OSEK/VDX Tasks
To map multitasking execution of a multi-rate model to OSEK/VDX, the
OSEKWorks target automatically defines, for each rate in the model, an
OSEK/VDX Task that runs at the corresponding rate and priority. Each
OSEK/VDX Task calls the model_step function, passing in an appropriate tid

Model Execution in the OSEK/VDX Operating Environment

5-3

argument in accordance with Real-Time Workshop conventions (i.e., the base
rate task gets tid 0, and sub-rate tasks gets tids 1..numTasks-1).

Each OSEK/VDX Task is activated by a corresponding cyclic OSEK/VDX
Alarm. OSEK/VDX is responsible for servicing hardware timer interrupts and
triggering Alarms at the appropriate rates.

The priority of the base rate (fastest) task is assigned by the user, via the Base
task priority parameter (see “Code Generation Options” on page 4–5).
OSEK/VDX Task priorities decrease from the base rate task to each of the
sub-rate tasks, such that the slowest rate has the lowest priority. Tasks are
scheduled preemptively.

This approach allows for several simplifications to be made to the generated
main program (osek_main.c):

• Each OSEK/VDX Task is specified to have only single activation. Therefore,
OSEK/VDX error handling mechanisms can detect timer overrun conditions,
so it is not necessary to maintain overrun flags separately.

• The base rate task does not schedule sub-rate tasks to run; instead
OSEK/VDX does the scheduling for the model rates. Therefore, the
rt_OneStep function is no longer required. Likewise, the event flags array
used by rt_OneStep, and the SetEventsForThisBaseStep function are not
needed.

The rate_monotonic_scheduler function is still needed to maintain flags for
the proper execution of Rate Transition blocks in the model. When the base
rate task calls model_step(0), the rate_monotonic_scheduler is called to
maintain those flags.

The following figure illustrates this model execution approach.

5 Model Execution

5-4

Model Execution in OSEK/VDX Target Environment

OSEK Scheduler: Runs
Tasks preemptively at
desired rates

TASK(baseRate)
{
 mratet_step(0);
 TerminateTask();
}

TASK(subRate2)
{
 mratet_step(2);
 TerminateTask();
}

TASK(subRate1)
{
 mratet_step(1);
 TerminateTask();
}

void mratet_step(int_T tid)
{
if (rtmIsSampleHit(rtM, 0, tid))
{
rate_monotonic_scheduler();
}

if (rtmIsSampleHit(rtM, 0, tid))
{ /* Sample time: [1.0, 0.0] */
/*algorithmic code */
...
}

}

static void rate_monotonic_scheduler(void)
{
 int_T i, j;

 /* Maintain flags used by Rate Transition
blocks and, if needed, absolute time */
 i = 1;
 while (--i >= 0) {
 if (!rtM->Timing.cTaskTicks[i]) {
 for (j = i+1; j < 3; j++) {
 rtM->Timing.perTaskSampleHits[i][j] =
 !rtM->Timing.cTaskTicks[j];
 }
 }
 }
 i = 3;
 while (--i > 0) {
 if (++rtM->Timing.cTaskTicks[i] ==
rtM->Timing.nTaskTicks[i]) {
 rtM->Timing.cTaskTicks[i] = 0;
 }
 }
}

Model Execution in the OSEK/VDX Operating Environment

5-5

Startup Task for OSEKWorks
Under OSEKWorks conventions, Board Support Packages are configured to
start the OSEK kernel directly via the StartOS() API, instead of invoking
StartOS() from the main() function of the application code.

It is expected that the application will have at least one AUTOSTART task. In the
case of generated model code, this is the init Task. Therefore, the normal
entry point (the main() function) is never used. The main() function is
generated within osek_main.c, but only to define the symbol main and for
consistency with other C programs.

The unused main() function for OSEKWorks consumes 36 bytes in the .text
section of the code.

5 Model Execution

5-6

6

Block Reference

This section contains the following topics:

The Embedded Target for OSEK/VDX
Block Library (p. 6-2)

Overview of the block library provided by the Embedded
Target for OSEK/VDX.

Blocks Organized by Category (p. 6-5) Block summaries and links to the block reference
documentation, grouped by block library.

6 Block Reference

6-2

The Embedded Target for OSEK/VDX Block Library
The Embedded Target for OSEK/VDX provides a library of blocks (oseklib.mdl)
that support a subset of the OSEK/VDX API. The following figure shows the
Embedded Target for OSEK/VDX block library.

A demonstration model, osek_apis, provides a working example of all the
blocks in the Embedded Target for OSEK/VDX block library.

In addition to the above blocks, an example device driver block for the Phytec
PhyCORE-MPC555 board is provided (see “PhyCORE-MPC555 LED” on
page 6-12). This block is convenient for providing visual feedback from a
generated program. It does not provide any OSEK-specific functionality.

The Embedded Target for OSEK/VDX automatically maps model code to
OSEK/VDX scheduling mechanisms (see “Model Execution in the OSEK/VDX
Operating Environment” on page 5-2). The Embedded Target for OSEK/VDX
block library gives you more explicit control over the mapping of the generated
model code to OSEK/VDX task management functions. This level of control is
useful (for example) when you want to use model-based design and code
generation to fit generated code into a larger application on a Task by Task
basis.

The blocks in the Embedded Target for OSEK/VDX block library let you specify
mappings to OSEK/VDX at a Function-Call Subsystem level. When these
blocks are used for code generation, certain changes in code execution behavior
are introduced. It is important to recognize and understand such effects when
using these blocks.

The Embedded Target for OSEK/VDX Block Library

6-3

One effect of using the blocks in this library is that the execution of the model
code on the target may produce results that do not match simulation behavior.
This is because OSEK API blocks (e.g., the Activate Task block) deviate from
the rate monotonic scheduling that the automatic mapping performs.

A second effect is related to data integrity. A Simulink signal is said to possess
data integrity when the values on the signal are consistent such that all bytes
(both within a scalar and across the scalars that form a signal vector), are
computed during the same time sample and thus form a meaningful value.
Normally, when data is passed between blocks of differing rates in the model,
Simulink enforces the use of Rate Transition blocks. This requirement, in
conjunction with rate monotonic scheduling, ensures data integrity and also
deterministic, repeatable results.

When Embedded Target for OSEK/VDX library blocks are used in a model,
however, Simulink does not fully control the relative priorities at which model
tasks run. Function-Call Subsystems (generated as OSEK Tasks) can be
preempted while they are in the process of reading or writing input or output
data. This can cause inconsistencies in the data that is read or written. To
avoid this issue and enforce data integrity, the Embedded Target for
OSEK/VDX provides a set of blocks (e.g., the OSEK Async Rate Transition
blocks) that ensure data integrity. Simulink enforces the use of these blocks.
This ensures data integrity, but does not guarantee generated code will
produce results that exactly match simulation results.

In some applications, data integrity protection is not required, and greater
efficiency can be achieved by omitting the data integrity protection code. In
such cases, you can use the Unprotected Async Rate Transition block.

The following sections provide complete information on each block in the
Embedded Target for OSEK/VDX block library, in a structured format. Refer
to these pages when you need details about a specific block. Click Help on the
Block Parameters dialog for the block, or access the block reference page
through Help.

Using Block Reference Pages
Block reference pages are listed in alphabetical order by the block name. Each
entry contains the following information:

• Purpose — describes why you use the block or function.

• Library — identifies the block library where you find the block.

6 Block Reference

6-4

• Description — describes what the block does.

• Dialog Box — shows the Block Parameters dialog and describes the
parameters and options contained in the dialog. Each parameter or option
appears with the appropriate choices and effects.

• Examples — optional section that provides demonstration models to
highlight block features.

In addition, block reference pages provide pictures of the Simulink model icon
for the blocks.

Blocks Organized by Category

6-5

Blocks Organized by Category
The blocks in the Embedded Target for OSEK/VDX library are organized into
categories that support different functions. The tables below reflect that
organization.

Embedded Target for OSEK/VDX Library Blocks

OSEK OS API Blocks

Block Name Purpose

Activate Task Generate an OSEK/VDX API
ActivateTask call

Set Alarm Generate an OSEK/VDX API
SetAbsAlarm or SetRelAlarm call

Data Integrity Blocks

Block Name Purpose

OSEK Async Rate Transition
(Reader)

Ensure data integrity for data
signals before crossing an async
rate boundary

OSEK Async Rate Transition
(Writer)

Ensure data integrity for data
signals after crossing an async rate
boundary

Unprotected OSEK Async Rate
Transition

Bypass data integrity protection for
a signal

6 Block Reference

6-6

Example Driver Block

Block Name Purpose

PhyCORE-MPC555 LED Demo driver for LEDs D4 and D5
on Phytec PhyCORE-MPC555
board

Alphabetical List of Blocks

6-7

Alphabetical List of Blocks 6

Activate Task . 6-8
OSEK Async Rate Transition (Reader) . 6-10
OSEK Async Rate Transition (Writer) . 6-11
PhyCORE-MPC555 LED . 6-12
Set Alarm . 6-13
Unprotected OSEK Async Rate Transition . 6-16

Activate Task

6-8

6Activate TaskPurpose Generate an OSEK/VDX API ActivateTask call

Library Embedded Target for OSEK/VDX

Description The Activate Task block is designed to be connected to the trigger input of a
downstream Function-Call Subsystem. It explicitly defines the Function-Call
Subsystem as an OSEK/VDX Task and activates the Task via a call to the
OSEK/VDX API function ActivateTask. The CALL input to the Activate Task
block can be driven by any function-call output, such as the output of a
Function-Call Generator block or a Stateflow function-call event.

The generated OSEK Task is activated from the model context in which the
Activate Task block is placed. The priority of the generated Task, relative to the
calling Activate Task block’s task priority, is important to consider. The caller’s
priority is typically assigned based on

• The caller’s sample rate relative to the model’s base sample rate

• The Base task priority specified in the OSEKWorks code generation
options or ProOSEK code generation options parameters

If the downstream Task priority is set to be lower than the caller’s, the
ActivateTask call puts the Task in the ready queue of the OSEK scheduler on
the target environment. This differs from simulation, where the Function-Call
Subsystem executes immediately upon being triggered and runs to completion
before the calling block returns.

If, however, the priority specified for the downstream Function-Call Subsystem
is higher than the Task in which the caller resides, the target behavior will
match the simulation behavior.

The Preemptive scheduling parameter of the Activate Task block lets you
specify the scheduling behavior of the Task as either full preemptive or
non-preemptive, as allowed by OSEK/VDX. This parameter should also be
considered when comparing execution on the target to simulation behavior.
The Activate Task Block has the effect of detaching the execution of the
Function-Call Subsystem from the caller. As a consequence, data read into and
written from the Function-Call Subsystem can be in an inconsistent state. To
ensure data integrity, Simulink requires that OSEK Async Rate Transition
(Reader or Writer) blocks are used with all inputs and outputs of for
Function-Call Subsystems that are triggered by Activate Task blocks.

Activate Task

6-9

When the Activate Task block is driven by a Set Alarm block, its behavior is
modified. The Activate Task block does not generate its own call to
ActivateTask; instead, the Alarm generated by the Set Alarm block activates
the Task. See “Set Alarm” on page 6-13 for additional details.

Dialog Box

Task name
Name of OSEK Task in the generated code.

Task priority
Priority of the generated OSEK Task. The priority must be unique within
the model.

Stack size (bytes)
Number of bytes allocated for this task’s stack.

Preemptive scheduling

• FULL: OSEK will allow preemption of the Task by the scheduler.

• NON: The Task cannot be preempted by any other Task.

OSEK Async Rate Transition (Reader)

6-10

6OSEK Async Rate Transition (Reader)Purpose Ensure data integrity for data signals before crossing an async rate boundary

Library Embedded Target for OSEK/VDX

Description The OSEK Async Rate Transition (Reader) block ensures data integrity for
data signals that are entering an Async Rate Transition boundary.

The OSEK Async Rate Transition Block (Reader) block is normally paired with
an OSEK Async Rate Transition Block (Writer) block. This reader/writer pair
uses two buffers and the OSEK/VDX EnableAllInterrupts and
DisableAllInterrupts calls to provide a mechanism that ensures proper,
exclusive access to control variables for the double buffers.

Dialog Box

Sample time
Sample time of the block.

OSEK Async Rate Transition (Writer)

6-11

6OSEK Async Rate Transition (Writer)Purpose Ensure data integrity for data signals after crossing an async rate boundary

Library Embedded Target for OSEK/VDX

Description The OSEK Async Rate Transition (Writer) block ensures data integrity for data
signals that are exiting an Async Rate Transition boundary.

The OSEK Async Rate Transition Block (Writer) block is normally paired with
an OSEK Async Rate Transition Block (Reader) block. This reader/writer pair
uses two buffers and the OSEK/VDX EnableAllInterrupts and
DisableAllInterrupts calls to provide a mechanism that ensures proper,
exclusive access to control variables for the double buffers.

Dialog Box

Sample time
Sample time of the block.

PhyCORE-MPC555 LED

6-12

6PhyCORE-MPC555 LEDPurpose Demo driver for LEDs D4 and D5 on Phytec PhyCORE-MPC555 board

Library Embedded Target for OSEK/VDX

Description The PhyCORE-MPC555 LED driver block provides a simple means for visual
feedback, via an LED, for programs running on the PHYTEC
phyCORE-MPC555 board.

The PhyCORE-MPC555 LED driver block uses the following bits of the
MPIOSMDR register:

• Bit 0: mapped to green LED at location D5

• Bit 1: mapped to red LED at location D4

The selected bit is toggled on or off by the input signal.

For an example of the use of this block, see the osek_led demo model. This
model is described in “The osek_led Demo Model” on page 3-28.

Dialog Box

LED choice
This menu lets you select either the green (D5) or red (D4) LED to be driven
by the input signal. Note that the color of the block icon changes from green
to red, depending upon your selection.

Set Alarm

6-13

6Set AlarmPurpose Generate an OSEK/VDX API SetAbsAlarm or SetRelAlarm call

Library Embedded Target for OSEK/VDX

Description The Set Alarm block generates either an absolute or relative OSEK Alarm via
OSEK/VDX API calls, SetAbsAlarm or SetRelAlarm call.

The Set Alarm block has two modes of operation, controlled by the Call only at
startup option. When this option is selected, the SetAbsAlarm or SetRelAlarm
call is only generated once, in the model initialization function. In this mode:

• No signal should be connected to the CALL input of the Set Alarm block.

• The Cyclic parameter can be set to nonzero values.

When the Call only at startup option is deselected, the Set Alarm block
generates a SetAbsAlarm or SetRelAlarm call in the model context in which the
Set Alarm block is placed. In this mode:

• The CALL input to the Alarm is valid and can be driven by any function-call
source.

• The Cyclic parameter can not be set to nonzero values. this disallows
multiple activations of the downstream Task.

Note that, in the current release, the Set Alarm block immediately activates
the downstream Task during simulation.

Set Alarm

6-14

Dialog Box

Alarm name
Name of the OSEK Alarm in the generated code.

Increment
The Increment parameter value is used directly as an argument to the
generated SetAbsAlarm or SetRelAlarm call. Where n is the Increment
value:

- For relative alarms, the Task assigned to the Alarm is activated after n
ticks of the OSEK system counter have elapsed.

- For absolute alarms, the Task assigned to the Alarm is activated when the
OSEK system counter reaches a value of n.

See the OSEK/VDX documentation for further information.

Cyclic
The Cyclic parameter value is used directly as an argument to the
generated SetAbsAlarm or SetRelAlarm call.

If Cyclic is set to a nonzero value c, the Alarm will repeatedly activate the
assigned Task every c ticks.

If Call only at startup is deselected, Cyclic is disabled (grayed out).

Type
This menu selects whether the alarm is relative or absolute.

Set Alarm

6-15

Call only at startup
When this option is selected, the Alarm is activated only during OSEK
startup.

Unprotected OSEK Async Rate Transition

6-16

6Unprotected OSEK Async Rate TransitionPurpose Bypass data integrity protection for a signal

Library Embedded Target for OSEK/VDX

Description The Unprotected OSEK Async Rate Transition block can be used when no data
integrity protection is desired for signals passing to and from a Function-Call
Subsystem that is defined as an OSEK Task. The block informs Simulink to
allow the data connection.

Dialog Box

Sample time
Sample time of the block.

I-1

Index

A
Activate Task block 6-8
ASAP2 files, generating 4-14
automatic debugging 3-25
automatic downloading 3-25

B
blocks

Activate Task 6-8
OSEK Async Rate Transition (Reader) 6-10
OSEK Async Rate Transition (Writer) 6-11
PhyCORE-MPC555 LED block 6-12
Set Alarm 6-13
Unprotected OSEK Async Rate Transition

6-16
Board Support Packages (BSPs) 1-4
build directories 4-2

C
code generation options

customization of 2-25
for OSEKWorks target 4-5

Base task priority 4-6
Build action 4-6
Force rebuild of static libraries 4-7
Include ErrorHook function 4-7
OSEKWorks Board Support Package 4-6
System counter (TICKSPERBASE) 4-7
System stack size 4-7
Task stack size 4-7

for ProOSEK target 4-7
Base task priority 4-9
Build action 4-9
Force rebuild of static libraries 4-9
Include ErrorHook function 4-10

ProOSEK Board selection 4-9
System counter increment rate

(TIME_IN_NS) 4-9
Task stack size 4-9

code generation reports 4-17
customizing code generation options 2-25

D
demos for Embedded Target for OSEK/VDX ix

E
Embedded Target for OSEK/VDX

demos ix
prerequisites for use of 1-2
related documentation 1-2
required hardware and software for 2-2
setting up 2-4
summary of features 1-4

F
FLASH memory

downloading code to 3-28
jumper setting for 2-7

G
generated files 4-2

I
installing Embedded Target for OSEK/VDX vi

Index

I-2

M
makefile rules, customization of 2-27
makefile variables, customization of 2-27
model execution 5-2

O
object libraries, efficient use of 4-10
OSEK Async Rate Transition (Reader) block

6-10
OSEK Async Rate Transition (Writer) block

6-11
OSEK Task support 5-2
OSEKWorks target

code generation options for 4-5
defined 1-4
setting up 2-16
software requirements for 2-2
tutorial 3-6

P
PhyCORE-MPC555 LED block 6-12
Phytec phyCORE-MPC555 board 2-5
prerequisites for using Embedded Target for

OSEK/VDX 1-2
ProOSEK target

code generation options for 4-7
defined 1-4
setting up 2-18
software requirements for 2-3
tutorial 3-12

R
related products x
reports, code generation 4-17

requirements for Embedded Target for OSEK/VDX
2-2

hardware 2-2
host PC 2-2
software 2-2

S
Set Alarm block 6-13
SingleStep debugger 2-20

downloading code with 3-18
required for OSEKWorks auto-downloading 2-2
required for ProOSEK auto-downloading 2-3
setting up 2-20

T
target hardware 2-5

configuration of 2-5
Phytec phyCORE-MPC555 board 2-5

configuring memory map for 2-8
installing Board Support Package for 2-16,

2-18
jumper settings 2-5
port connections 2-5
support files for 2-7
test executable for 2-7

target preferences
defined 2-12
editing 2-14
properties 2-12
setting 2-12
Setup window 2-14

Target Preferences Setup window 2-14
tutorial, creating OSEK applications

automatic downloading and debugging 3-25
debugging code on target system 3-21

Index

I-3

downloading code to FLASH 3-28
downloading code to target 3-18
example model for 3-4
introduction 3-2
with OSEKWorks target 3-6
with ProOSEK target 3-12

typographical conventions (table) xii

U
Unprotected OSEK Async Rate Transition block

6-16

	Contents
	Preface
	Installing the Embedded Target for OSEK/VDX
	Version 1.0 Release Notes
	Known Software and Documentation Problems

	Using This Guide
	Embedded Target for OSEK/VDX Demos
	Related Products
	Typographical Conventions

	Product Overview
	What You Need to Know to Use This Product
	Introduction to the Embedded Target for OSEK/VDX
	Feature Summary

	Configuring the Embedded Target for OSEK/VDX
	Hardware and Software Requirements
	Host Platform
	Hardware Requirements
	Software Requirements

	Setting Up and Verifying Your Installation
	Setting Up Your Target Hardware
	Physical Connections and Communications Ports
	Jumper Settings
	Special Files Provided for Use with the Phytec phyCORE-MPC555 Board
	Configuring the Memory Map for the Phytec phyCORE-MPC555 Board

	Setting Target Preferences
	Target Preference Properties
	Editing Target Preferences

	Setting Up Your Installation for the OSEKWorks Target
	Installing the PhyCORE-555 BSP for OSEKWorks

	Setting Up Your Installation for the ProOSEK Target
	Installing the PhyCORE-555 BSP for ProOSEK

	Setting Up SingleStep
	SingleStep Installation
	Configuring SingleStep

	Customization Hooks for the OSEKWorks and ProOSEK Targets
	Adding Custom Code Generation Options
	Adding Custom Makefile Variables and Rules

	Generating Real-Time OSEK/VDX Applications
	Introduction
	The Multi-Rate Example Model
	Tutorial 1: Creating an Application with OSEKWorks
	Before You Begin
	Configuring the Model
	Building the Application
	Downloading and Running the Application

	Tutorial 2: Creating an Application with ProOSEK
	Before You Begin
	Configuring the Model
	Building the Application
	Downloading and Running the Application

	Tutorial 3: Downloading the Application to RAM via SingleStep
	Downloading the Generated Code to RAM
	Observing the Generated Code

	Tutorial 4: Automated Downloading and Debugging
	Tutorial 5: Downloading Generated Code to FLASH
	The osek_led Demo Model
	Downloading Generated Code to FLASH with SingleStep On-Chip (v. 7.6.2)
	Downloading Generated Code to FLASH with SingleStep with vision

	Generating Code, Calibration Data, and Reports
	Build Directories and Files
	Build Directory (model_implementation)
	Output Subdirectory (BSP_obj)
	HTML Report Subdirectory (optional)

	Code Generation Options
	Target-Specific Options for OSEKWorks Target
	Target-Specific Options for ProOSEK Target
	Setting System and Task Stack Size
	Efficient Use of Persistent Object Libraries
	Custom Debugger Support
	Restrictions on Code Generation Options

	Generating ASAP2 Files
	Compiler-Specific Post-Processing Requirements
	ASAP2 File Generation Procedure

	Code Generation Reports

	Model Execution
	Model Execution in the OSEK/VDX Operating Environment
	Rate Scheduler Functions
	Model Rates and OSEK/VDX Tasks
	Startup Task for OSEKWorks

	Block Reference
	The Embedded Target for OSEK/VDX Block Library
	Using Block Reference Pages

	Blocks Organized by Category
	Embedded Target for OSEK/VDX Library Blocks

	Alphabetical List of Blocks

	Index

